Merge pull request #429 from microsoft/user/sheilk/opencv-test

Add OpenCV Interop sample to the gallery
This commit is contained in:
Sheil Kumar 2021-10-28 16:47:44 -07:00 коммит произвёл GitHub
Родитель 8515b4660d c9a39a8a0b
Коммит 1020a0f612
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
28 изменённых файлов: 1324 добавлений и 86 удалений

2
.gitignore поставляемый
Просмотреть файл

@ -13,12 +13,14 @@
*.userprefs
# Build results
[Bb]uild/
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
x64/
x86/
[Ii]nt/
bld/
[Bb]in/
[Oo]bj/

3
.gitmodules поставляемый
Просмотреть файл

@ -4,3 +4,6 @@
[submodule "Samples/RustSqueezenet/winrt-rs"]
path = Samples/RustSqueezenet/winrt-rs
url = https://github.com/microsoft/winrt-rs.git
[submodule "external/opencv"]
path = external/opencv
url = https://github.com/opencv/opencv.git

Просмотреть файл

@ -54,24 +54,24 @@ A subdomain of computer vision in which an algorithm looks at an image and assig
| Windows App Type <br/>Distribution | UWP<br/>In-Box | UWP<br/>NuGet | Desktop<br/>In-Box | Desktop<br/>NuGet |
|------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| [AlexNet](https://github.com/onnx/models/tree/master/vision/classification/alexnet) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [CaffeNet](https://github.com/onnx/models/tree/master/vision/classification/caffenet) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [DenseNet](https://github.com/onnx/models/tree/master/vision/classification/densenet-121) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [EfficientNet](https://github.com/onnx/models/tree/master/vision/classification/efficientnet-lite4) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [AlexNet](https://github.com/onnx/models/tree/master/vision/classification/alexnet) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [CaffeNet](https://github.com/onnx/models/tree/master/vision/classification/caffenet) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [DenseNet](https://github.com/onnx/models/tree/master/vision/classification/densenet-121) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [EfficientNet](https://github.com/onnx/models/tree/master/vision/classification/efficientnet-lite4) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [Emoji8](https://blogs.windows.com/windowsdeveloper/2018/11/16/introducing-emoji8/) | [C#](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/Emoji8/UWP/cs) | |
| [GoogleNet](https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/googlenet) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [InceptionV1](https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/inception_v1) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [InceptionV2](https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/inception_v2) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [GoogleNet](https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/googlenet) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [InceptionV1](https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/inception_v1) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [InceptionV2](https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/inception_v2) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [MNIST](https://github.com/onnx/models/tree/master/vision/classification/mnist) | [C++/CX](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/MNIST/UWP)<br/>[✔C#](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/MNIST/Tutorial/cs)<br/> | |
| [MobileNetV2](https://github.com/onnx/models/tree/master/vision/classification/mobilenet) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [RCNN](https://github.com/onnx/models/tree/master/vision/classification/rcnn_ilsvrc13) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [ResNet50](https://github.com/onnx/models/tree/master/vision/classification/resnet) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [ShuffleNetV1](https://github.com/onnx/models/tree/master/vision/classification/shufflenet) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [ShuffleNetV2](https://github.com/onnx/models/tree/master/vision/classification/shufflenet) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [SqueezeNet](https://github.com/onnx/models/tree/master/vision/classification/squeezenet) | [C#](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)<br/>[✔JavaScript](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)<br/> | |[✔C++/WinRT](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)<br/> [C# .NET5](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/NET5)<br/>[✔C# .NET Core 2](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/NETCore/cs)<br/>|[✔C++/WinRT](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)<br/>[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>[✔Rust](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/RustSqueezenet)<br/>|
| [VGG19](https://github.com/onnx/models/tree/master/vision/classification/vgg) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [VGG19bn](https://github.com/onnx/models/tree/master/vision/classification/vgg) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [ZFNet512](https://github.com/onnx/models/tree/master/vision/classification/zfnet-512) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [MobileNetV2](https://github.com/onnx/models/tree/master/vision/classification/mobilenet) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [RCNN](https://github.com/onnx/models/tree/master/vision/classification/rcnn_ilsvrc13) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [ResNet50](https://github.com/onnx/models/tree/master/vision/classification/resnet) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [ShuffleNetV1](https://github.com/onnx/models/tree/master/vision/classification/shufflenet) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [ShuffleNetV2](https://github.com/onnx/models/tree/master/vision/classification/shufflenet) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [SqueezeNet](https://github.com/onnx/models/tree/master/vision/classification/squeezenet) | [C#](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)<br/>[✔JavaScript](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/UWP/cs)<br/> | |[✔C++/WinRT](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)<br/> [C# .NET5](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/NET5)<br/>[✔C# .NET Core 2](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/NETCore/cs)<br/>|[✔C++/WinRT](https://github.com/Microsoft/Windows-Machine-Learning/tree/master/Samples/SqueezeNetObjectDetection/Desktop/cpp)<br/>[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>[✔Rust](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/RustSqueezenet)<br/>|
| [VGG19](https://github.com/onnx/models/tree/master/vision/classification/vgg) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [VGG19bn](https://github.com/onnx/models/tree/master/vision/classification/vgg) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
| [ZFNet512](https://github.com/onnx/models/tree/master/vision/classification/zfnet-512) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
**Style Transfer**
@ -87,7 +87,7 @@ A computer vision technique that allows us to recompose the content of an image
| | Store App<br/>Inbox API | Store App<br/>NuGet API | Desktop App<br/>Inbox API | Desktop App<br/>NuGet API |
|------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| [YoloV4](https://github.com/onnx/models/raw/master/vision/object_detection_segmentation/yolov4/model/yolov4.onnx) | | ||[✔C# .NET5 - Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery)<br/>|
| [YoloV4](https://github.com/onnx/models/raw/master/vision/object_detection_segmentation/yolov4/model/yolov4.onnx) | | ||[✔C# .NET5 - Samples Gallery](Samples/WinMLSamplesGallery)<br/>|
-->
@ -104,6 +104,7 @@ These advanced samples show how to use various binding and evaluation features i
- **[PyTorch Data Analysis](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: The tutorial shows how to solve a classification task with a neural network using the PyTorch library, export the model to ONNX format and deploy the model with the Windows Machine Learning application that can run on any Windows device.
- **[PyTorch Image Classification](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: The tutorial shows how to train an image classification neural network model using PyTorch, export the model to the ONNX format, and deploy it in a Windows Machine Learning application running locally on your Windows device.
- **[YoloV4 Object Detection](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: This tutorial shows how to build a UWP C# app that uses the YOLOv4 model to detect objects in video streams.
- **[OpenCV Interop](Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/OpenCVInterop)**: This sample demonstrates how to interop between [Windows ML](https://docs.microsoft.com/en-us/windows/ai/windows-ml/) and [OpenCV](https://github.com/opencv/opencv).
## Developer Tools
@ -135,7 +136,7 @@ These advanced samples show how to use various binding and evaluation features i
Download for [VS 2017](https://marketplace.visualstudio.com/items?itemName=WinML.mlgen), [VS 2019](https://marketplace.visualstudio.com/items?itemName=WinML.MLGenV2)
- **[WinML Samples Gallery](https://github.com/microsoft/Windows-Machine-Learning/tree/master/Samples/WinMLSamplesGallery):** explore a variety of ML integration scenarios and models.
- **[WinML Samples Gallery](Samples/WinMLSamplesGallery):** explore a variety of ML integration scenarios and models.
- Check out the [Model Samples](#model-samples) and [Advanced Scenario Samples](#advanced-scenarios) to learn how to use Windows ML in your application.

Просмотреть файл

@ -36,6 +36,8 @@ To learn how to implement these features in your application, or unlock addition
- [Batched Inputs](./WinMLSamplesGallery/Samples/Batching): WinML enables batched inputs that allow callers to perform inference over multiple inputs at once in order to increase performance. Use this sample to compare inference runtime performace with and without batching.
- [OpenCV Interop](./WinMLSamplesGallery/Samples/OpenCVInterop): This sample demonstrates how to interop between [Windows ML](https://docs.microsoft.com/en-us/windows/ai/windows-ml/) and [OpenCV](https://github.com/opencv/opencv). The demo will run [SqueezeNet](https://github.com/onnx/models/tree/master/vision/classification/squeezenet) image classification in WindowsML and consume images loaded and preprocessed using OpenCV.
## Feedback
Please file an issue [here](https://github.com/microsoft/Windows-Machine-Learning/issues/new) if you encounter any issues with the WinML Samples Gallery or wish to request a new sample.

Просмотреть файл

@ -128,6 +128,7 @@
</ItemGroup>
<ItemGroup>
<None Include="$(SolutionDir)$(Platform)\$(Configuration)\WinMLSamplesGalleryNative\*.dll" Link="%(RecursiveDir)%(Filename)%(Extension)" CopyToOutputDirectory="PreserveNewest" />
<None Include="$(SolutionDir)..\..\build\external\opencv\cmake_config\$(Platform)\bin\$(Configuration)\*.dll" Link="%(RecursiveDir)%(Filename)%(Extension)" CopyToOutputDirectory="PreserveNewest" />
</ItemGroup>
<Import Project="$(WapProjPath)\Microsoft.DesktopBridge.targets" />
<ItemGroup>

Просмотреть файл

@ -28,6 +28,9 @@ namespace WinMLSamplesGallery
case "ImageEffects":
SampleFrame.Navigate(typeof(Samples.ImageEffects));
break;
case "OpenCVInterop":
SampleFrame.Navigate(typeof(Samples.OpenCVInterop));
break;
}
if (sampleMetadata.Docs.Count > 0)
DocsHeader.Visibility = Visibility.Visible;

Просмотреть файл

@ -39,6 +39,17 @@ namespace WinMLSamplesGallery
for (int i = 0; i < metadataJsonArray.Count; i++)
{
JsonObject currentSampleMetadata = metadataJsonArray[i].GetObject();
bool shouldHideSample = false;
#if !USE_OPENCV
shouldHideSample |= currentSampleMetadata["Tag"].GetString() == "OpenCVInterop";
#endif
if (shouldHideSample)
{
continue;
}
allSampleMetadata.Add(new SampleMetadata
{
Title = currentSampleMetadata["Title"].GetString(),

Просмотреть файл

@ -34,6 +34,16 @@
"link": "https://docs.microsoft.com/en-us/uwp/api/windows.ai.machinelearning.learningmodelsessionoptions.batchsizeoverride?view=winrt-20348"
}
]
},
{
"Title": "OpenCV Interop",
"DescriptionShort": "The sample uses Windows ML to classify images that have been denoised using OpenCV.",
"Description": "This sample demonstrates interop between Windows ML and OpenCV. The sample classifes images that have been denoised using OpenCV's medianBlur using the SqueezeNet model on Windows ML. Choose an image to get started.",
"Icon": "\uE155",
"Tag": "OpenCVInterop",
"XAMLGithubLink": "https://github.com/microsoft/Windows-Machine-Learning/blob/master/Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/OpenCVInterop/OpenCVInterop.xaml",
"CSharpGithubLink": "https://github.com/microsoft/Windows-Machine-Learning/blob/master/Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/OpenCVInterop/OpenCVInterop.xaml.cs",
"Docs": []
}
]
}

Просмотреть файл

@ -233,9 +233,7 @@ namespace WinMLSamplesGallery.Samples
private void InitializeWindowsMachineLearning()
{
_tensorizationSession =
CreateLearningModelSession(
TensorizationModels.BasicTensorization(
_tensorizationSession = CreateLearningModelSession(TensorizationModels.BasicTensorization(
Height, Width,
BatchSize, Channels, CurrentImageDecoder.PixelHeight, CurrentImageDecoder.PixelWidth,
"nearest"),
@ -287,7 +285,7 @@ namespace WinMLSamplesGallery.Samples
{
var pixelDataProvider = decoder.GetPixelDataAsync().GetAwaiter().GetResult();
var bytes = pixelDataProvider.DetachPixelData();
var buffer = bytes.AsBuffer(); // Need to make this 0 copy...
var buffer = bytes.AsBuffer();
input = TensorUInt8Bit.CreateFromBuffer(new long[] { 1, buffer.Length }, buffer);
tensorizationSession = _tensorizationSession;
@ -303,6 +301,7 @@ namespace WinMLSamplesGallery.Samples
var tensorizationResults = Evaluate(tensorizationSession, input);
tensorizedOutput = tensorizationResults.Outputs.First().Value;
}
stop = HighResolutionClock.UtcNow();
var tensorizeDuration = HighResolutionClock.DurationInMs(start, stop);

Просмотреть файл

@ -0,0 +1,173 @@
<Page
x:Class="WinMLSamplesGallery.Samples.OpenCVInterop"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:local_controls="using:WinMLSamplesGallery.Controls"
xmlns:local_samples="using:WinMLSamplesGallery.Samples"
mc:Ignorable="d"
Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Page.Resources>
<DataTemplate x:Key="ImageTemplate" x:DataType="local_controls:Thumbnail">
<Image Stretch="UniformToFill" Source="{x:Bind ImageUri}" Width="200" Height="204" />
</DataTemplate>
<DataTemplate x:Name="InferenceResultsTemplate" x:DataType="local_controls:Prediction">
<StackPanel Orientation="Horizontal">
<TextBlock Width="414"
FontSize="14"
Foreground="Black"
Padding="0,1,1,1"
Typography.Capitals="AllSmallCaps"
Typography.StylisticSet4="True"
TextTrimming="CharacterEllipsis">
<Run Text="[" />
<Run Text="{Binding Index}" />
<Run Text="] " />
<Run Text="{Binding Name}" />
</TextBlock>
<TextBlock Width="120"
FontSize="14"
Foreground="Black"
Padding="0,1,1,1"
Typography.Capitals="AllSmallCaps"
Typography.StylisticSet4="True">
<Run Text="p =" />
<Run Text="{Binding Probability}" />
</TextBlock>
</StackPanel>
</DataTemplate>
<DataTemplate x:Name="AllModelsTemplate" x:DataType="local_samples:ClassifierViewModel">
<Grid Background="#e6e6e6" BorderBrush="#12bef6" BorderThickness="1">
<TextBlock FontSize="14" Text="{x:Bind Title}"
Typography.Capitals="AllSmallCaps"
Typography.StylisticSet4="True"
VerticalAlignment="Top"
Padding="10,2,10,2"
MinWidth="136"
/>
</Grid>
</DataTemplate>
</Page.Resources>
<Grid>
<ScrollViewer
ZoomMode="Disabled"
IsVerticalScrollChainingEnabled="True"
HorizontalScrollMode="Enabled" HorizontalScrollBarVisibility="Disabled"
VerticalScrollMode="Enabled" VerticalScrollBarVisibility="Visible">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>
<StackPanel Grid.Row="0" Orientation="Horizontal" Padding="0,10,0,0">
<StackPanel Orientation="Vertical">
<StackPanel Orientation="Horizontal" HorizontalAlignment="Left">
<Button FontFamily="Segoe MDL2 Assets" Content="&#xE1A5;" Width="97" Height="50" HorizontalAlignment="Left" Click="OpenButton_Clicked" />
<Grid Padding="5,0,0,0">
<ComboBox x:Name="DeviceComboBox" SelectedIndex="0" Background="LightGray" PlaceholderText="Device" Height="50" Width="97"
SelectionChanged="DeviceComboBox_SelectionChanged">
<TextBlock Text="CPU" FontSize="18" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True"/>
<TextBlock Text="DML" FontSize="18" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True"/>
</ComboBox>
</Grid>
</StackPanel>
<GridView
x:Name="BasicGridView"
ItemTemplate="{StaticResource ImageTemplate}"
IsItemClickEnabled="True"
SelectionChanged="SampleInputsGridView_SelectionChanged"
SelectionMode="Single"
Padding="0,6,0,0"
HorizontalAlignment="Center">
<GridView.ItemsPanel>
<ItemsPanelTemplate>
<StackPanel Orientation="Vertical" />
</ItemsPanelTemplate>
</GridView.ItemsPanel>
<GridView.Items>
<local_controls:Thumbnail ImageUri="ms-appx:///InputData/hummingbird.jpg" />
</GridView.Items>
</GridView>
</StackPanel>
<StackPanel Orientation="Horizontal">
<StackPanel Orientation="Vertical" Margin="11,0,0,0">
<Border x:Name="OriginalBorder" Background="LightGray" BorderBrush="LightGray" CornerRadius="5,5,0,0" Padding="0,5,0,5">
<Grid Width="200">
<TextBlock Text="Original" FontSize="18" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True" HorizontalAlignment="Center"/>
</Grid>
</Border>
<Grid Background="LightGray" HorizontalAlignment="Center" Height="200" Width="200" VerticalAlignment="Top">
<Image x:Name="InputImage" Stretch="UniformToFill" Height="200" HorizontalAlignment="Center"/>
</Grid>
<Button Content="Classify" x:Name="InferOriginal" IsEnabled="false" FontFamily="Segoe UI Light" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True"
Style="{StaticResource AccentButtonStyle}" Width="200"
Click="InferOriginal_Click"/>
</StackPanel>
<StackPanel Orientation="Vertical" Margin="11,0,0,0">
<Border x:Name="NoisyBorder" Background="LightGray" BorderBrush="LightGray" CornerRadius="5,5,0,0" Padding="0,5,0,5">
<Grid Width="200">
<TextBlock Text="Noisy" FontSize="18" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True" HorizontalAlignment="Center"/>
</Grid>
</Border>
<Grid Background="LightGray" HorizontalAlignment="Center" Height="200" Width="200" VerticalAlignment="Top">
<Image x:Name="NoisyImage" Stretch="UniformToFill" Height="200" HorizontalAlignment="Center"/>
</Grid>
<Button Content="Classify" x:Name="InferNoisy" IsEnabled="false" FontFamily="Segoe UI Light" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True"
Style="{StaticResource AccentButtonStyle}" Width="200"
Click="InferNoisy_Click"/>
</StackPanel>
<StackPanel Orientation="Vertical" Margin="11,0,0,0">
<Border x:Name="DenoisedBorder" Background="LightGray" BorderBrush="LightGray" CornerRadius="5,5,0,0" Padding="0,5,0,5">
<Grid Width="200">
<TextBlock Text="Denoised" FontSize="18" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True" HorizontalAlignment="Center"/>
</Grid>
</Border>
<Grid Background="LightGray" HorizontalAlignment="Center" Height="200" Width="200" VerticalAlignment="Top">
<Image x:Name="DenoisedImage" Stretch="UniformToFill" Height="200" HorizontalAlignment="Center"/>
</Grid>
<Button Content="Classify" x:Name="InferDenoised" IsEnabled="false" FontFamily="Segoe UI Light" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True"
Style="{StaticResource AccentButtonStyle}" Width="200"
Click="InferDenoised_Click"/>
</StackPanel>
</StackPanel>
</StackPanel>
<StackPanel Orientation="Horizontal" Grid.Row="2"
Padding="0,7,0,0">
<ListView
x:Name="InferenceResults"
HorizontalAlignment="Stretch"
Padding="0,2,0,0"
ItemTemplate="{StaticResource InferenceResultsTemplate}"
IsItemClickEnabled="False"
SingleSelectionFollowsFocus="False">
<ListView.ItemContainerStyle>
<Style TargetType="ListViewItem">
<Setter Property="Margin" Value="1,1,1,1"/>
<Setter Property="MinHeight" Value="0"/>
</Style>
</ListView.ItemContainerStyle>
<ListView.ItemsPanel>
<ItemsPanelTemplate>
<ItemsWrapGrid x:Name="MaxItemsWrapGrid" Orientation="Vertical" HorizontalAlignment="Stretch"/>
</ItemsPanelTemplate>
</ListView.ItemsPanel>
</ListView>
<local_controls:PerformanceMonitor x:Name="PerformanceMetricsMonitor"/>
</StackPanel>
</Grid>
</ScrollViewer>
</Grid>
</Page>

Просмотреть файл

@ -0,0 +1,343 @@
using Microsoft.AI.MachineLearning;
using Microsoft.UI.Xaml;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Data;
using Microsoft.UI.Xaml.Media;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices.WindowsRuntime;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.Foundation.Metadata;
using Windows.Graphics.Imaging;
using Windows.Media;
using Windows.Storage;
using Windows.UI;
using WinMLSamplesGallery.Common;
using WinMLSamplesGallery.Controls;
namespace WinMLSamplesGallery.Samples
{
/// <summary>
/// An empty page that can be used on its own or navigated to within a Frame.
/// </summary>
public sealed partial class OpenCVInterop : Page
{
enum ClassifyChoice {
Original,
Noisy,
Denoised
}
const long BatchSize = 1;
const long TopK = 10;
const long Height = 224;
const long Width = 224;
const long Channels = 4;
private LearningModelSession _inferenceSession;
private LearningModelSession _tensorizationSession;
private LearningModelSession _postProcessingSession;
private static Dictionary<long, string> _imagenetLabels;
private WinMLSamplesGalleryNative.OpenCVImage Original { get; set; }
private WinMLSamplesGalleryNative.OpenCVImage Noisy { get; set; }
private WinMLSamplesGalleryNative.OpenCVImage Denoised { get; set; }
private string _currentImagePath = null;
private string CurrentImagePath {
get {
return _currentImagePath;
}
set
{
_currentImagePath = value;
UpdateSelected();
}
}
private void UpdateSelected()
{
if (_currentImagePath == null)
{
OriginalBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
NoisyBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
DenoisedBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
InferOriginal.IsEnabled = false;
InferNoisy.IsEnabled = false;
InferDenoised.IsEnabled = false;
}
else
{
InferOriginal.IsEnabled = true;
InferNoisy.IsEnabled = true;
InferDenoised.IsEnabled = true;
switch (InferenceChoice)
{
case ClassifyChoice.Original:
OriginalBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGreen);
NoisyBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
DenoisedBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
break;
case ClassifyChoice.Noisy:
OriginalBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
NoisyBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGreen);
DenoisedBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
break;
case ClassifyChoice.Denoised:
OriginalBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
NoisyBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGray);
DenoisedBorder.Background = new SolidColorBrush(Microsoft.UI.Colors.LightGreen);
break;
}
}
}
private ClassifyChoice InferenceChoice { get; set; }
#pragma warning disable CA1416 // Validate platform compatibility
private LearningModelDeviceKind SelectedDeviceKind
{
get
{
return (DeviceComboBox.SelectedIndex == 0) ?
LearningModelDeviceKind.Cpu :
LearningModelDeviceKind.DirectXHighPerformance;
}
}
#pragma warning restore CA1416 // Validate platform compatibility
public OpenCVInterop()
{
this.InitializeComponent();
CurrentImagePath = null;
InferenceChoice = ClassifyChoice.Denoised;
_imagenetLabels = LoadLabels("ms-appx:///InputData/sysnet.txt");
_inferenceSession = CreateLearningModelSession("ms-appx:///Models/squeezenet1.1-7.onnx");
_postProcessingSession = CreateLearningModelSession(TensorizationModels.SoftMaxThenTopK(TopK));
}
#pragma warning disable CA1416 // Validate platform compatibility
private (IEnumerable<string>, IReadOnlyList<float>) Classify(WinMLSamplesGalleryNative.OpenCVImage image)
{
long start, stop;
PerformanceMetricsMonitor.ClearLog();
start = HighResolutionClock.UtcNow();
object input = image.AsTensor();
stop = HighResolutionClock.UtcNow();
var pixelAccessDuration = HighResolutionClock.DurationInMs(start, stop);
// Tensorize
start = HighResolutionClock.UtcNow();
object tensorizedOutput = input;
var tensorizationResults = Evaluate(_tensorizationSession, input);
tensorizedOutput = tensorizationResults.Outputs.First().Value;
stop = HighResolutionClock.UtcNow();
var tensorizeDuration = HighResolutionClock.DurationInMs(start, stop);
// Inference
start = HighResolutionClock.UtcNow();
var inferenceResults = Evaluate(_inferenceSession, tensorizedOutput);
var inferenceOutput = inferenceResults.Outputs.First().Value;
stop = HighResolutionClock.UtcNow();
var inferenceDuration = HighResolutionClock.DurationInMs(start, stop);
// PostProcess
start = HighResolutionClock.UtcNow();
var postProcessedOutputs = Evaluate(_postProcessingSession, inferenceOutput);
var topKValues = (TensorFloat)postProcessedOutputs.Outputs["TopKValues"];
var topKIndices = (TensorInt64Bit)postProcessedOutputs.Outputs["TopKIndices"];
// Return results
var probabilities = topKValues.GetAsVectorView();
var indices = topKIndices.GetAsVectorView();
var labels = indices.Select((index) => _imagenetLabels[index]);
stop = HighResolutionClock.UtcNow();
var postProcessDuration = HighResolutionClock.DurationInMs(start, stop);
PerformanceMetricsMonitor.Log("Pixel Access (CPU)", pixelAccessDuration);
PerformanceMetricsMonitor.Log("Tensorize", tensorizeDuration);
PerformanceMetricsMonitor.Log("Pre-process", 0);
PerformanceMetricsMonitor.Log("Inference", inferenceDuration);
PerformanceMetricsMonitor.Log("Post-process", postProcessDuration);
return (labels, probabilities);
}
private static LearningModelEvaluationResult Evaluate(LearningModelSession session, object input)
{
// Create the binding
var binding = new LearningModelBinding(session);
// Create an emoty output, that will keep the output resources on the GPU
// It will be chained into a the post processing on the GPU as well
var output = TensorFloat.Create();
// Bind inputs and outputs
// For squeezenet these evaluate to "data", and "squeezenet0_flatten0_reshape0"
string inputName = session.Model.InputFeatures[0].Name;
string outputName = session.Model.OutputFeatures[0].Name;
binding.Bind(inputName, input);
var outputBindProperties = new PropertySet();
outputBindProperties.Add("DisableTensorCpuSync", PropertyValue.CreateBoolean(true));
binding.Bind(outputName, output, outputBindProperties);
// Evaluate
return session.Evaluate(binding, "");
}
private LearningModelSession CreateLearningModelSession(string modelPath)
{
var model = CreateLearningModel(modelPath);
var session = CreateLearningModelSession(model);
return session;
}
private LearningModelSession CreateLearningModelSession(LearningModel model, Nullable<LearningModelDeviceKind> kind = null)
{
var device = new LearningModelDevice(kind ?? SelectedDeviceKind);
var options = new LearningModelSessionOptions()
{
CloseModelOnSessionCreation = true // Close the model to prevent extra memory usage
};
var session = new LearningModelSession(model, device, options);
return session;
}
private static LearningModel CreateLearningModel(string modelPath)
{
var uri = new Uri(modelPath);
var file = StorageFile.GetFileFromApplicationUriAsync(uri).GetAwaiter().GetResult();
return LearningModel.LoadFromStorageFileAsync(file).GetAwaiter().GetResult();
}
#pragma warning restore CA1416 // Validate platform compatibility
private static Dictionary<long, string> LoadLabels(string csvFile)
{
var file = StorageFile.GetFileFromApplicationUriAsync(new Uri(csvFile)).GetAwaiter().GetResult();
var text = Windows.Storage.FileIO.ReadTextAsync(file).GetAwaiter().GetResult();
var labels = new Dictionary<long, string>();
var records = text.Split(Environment.NewLine);
foreach (var record in records)
{
var fields = record.Split(",", 2);
if (fields.Length == 2)
{
var index = long.Parse(fields[0]);
labels[index] = fields[1];
}
}
return labels;
}
private void TryPerformInference(bool reloadImages = true)
{
if (CurrentImagePath != null)
{
if (reloadImages)
{
Original = WinMLSamplesGalleryNative.OpenCVImage.CreateFromPath(CurrentImagePath);
Noisy = WinMLSamplesGalleryNative.OpenCVImage.AddSaltAndPepperNoise(Original);
Denoised = WinMLSamplesGalleryNative.OpenCVImage.DenoiseMedianBlur(Noisy);
var baseImageBitmap = Original.AsSoftwareBitmap();
RenderingHelpers.BindSoftwareBitmapToImageControl(InputImage, baseImageBitmap);
RenderingHelpers.BindSoftwareBitmapToImageControl(NoisyImage, Noisy.AsSoftwareBitmap());
RenderingHelpers.BindSoftwareBitmapToImageControl(DenoisedImage, Denoised.AsSoftwareBitmap());
var tensorizationModel = TensorizationModels.CastResizeAndTranspose11(Height, Width, 1, 3, baseImageBitmap.PixelHeight, baseImageBitmap.PixelWidth, "nearest");
_tensorizationSession = CreateLearningModelSession(tensorizationModel, SelectedDeviceKind);
}
WinMLSamplesGalleryNative.OpenCVImage classificationImage = null;
switch (InferenceChoice)
{
case ClassifyChoice.Original:
classificationImage = Original;
break;
case ClassifyChoice.Noisy:
classificationImage = Noisy;
break;
case ClassifyChoice.Denoised:
classificationImage = Denoised;
break;
}
// Classify
var (labels, probabilities) = Classify(classificationImage);
// Render the classification and probabilities
RenderInferenceResults(labels, probabilities);
}
}
private void RenderInferenceResults(IEnumerable<string> labels, IReadOnlyList<float> probabilities)
{
var indices = Enumerable.Range(1, probabilities.Count);
var zippedResults = indices.Zip(labels.Zip(probabilities));
var results = zippedResults.Select(
(zippedResult) =>
new Controls.Prediction {
Index = zippedResult.First,
Name = zippedResult.Second.First.Trim(new char[] { ',' }),
Probability = zippedResult.Second.Second.ToString("E4")
});
InferenceResults.ItemsSource = results;
InferenceResults.SelectedIndex = 0;
}
private void OpenButton_Clicked(object sender, RoutedEventArgs e)
{
var storageFile = ImageHelper.PickImageFiles();
if (storageFile != null)
{
BasicGridView.SelectedItem = null;
CurrentImagePath = storageFile.Path;
TryPerformInference();
}
}
private void SampleInputsGridView_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
var gridView = (GridView)sender;
var thumbnail = (Thumbnail)gridView.SelectedItem;
if (thumbnail != null)
{
var file = StorageFile.GetFileFromApplicationUriAsync(new Uri(thumbnail.ImageUri)).GetAwaiter().GetResult();
CurrentImagePath = file.Path;
TryPerformInference();
}
}
private void DeviceComboBox_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
TryPerformInference();
}
private void InferOriginal_Click(object sender, RoutedEventArgs e)
{
InferenceChoice = ClassifyChoice.Original;
UpdateSelected();
TryPerformInference(false);
}
private void InferNoisy_Click(object sender, RoutedEventArgs e)
{
InferenceChoice = ClassifyChoice.Noisy;
UpdateSelected();
TryPerformInference(false);
}
private void InferDenoised_Click(object sender, RoutedEventArgs e)
{
InferenceChoice = ClassifyChoice.Denoised;
UpdateSelected();
TryPerformInference(false);
}
}
}

Просмотреть файл

@ -0,0 +1,49 @@
# WinML Samples Gallery: OpenCV Interop
This sample demonstrates how to interop between [Windows ML](https://docs.microsoft.com/en-us/windows/ai/windows-ml/) and [OpenCV](https://github.com/opencv/opencv).
OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in the commercial products.
The demo will run [SqueezeNet](https://github.com/onnx/models/tree/master/vision/classification/squeezenet) image classification in WindowsML and consume images loaded and preprocessed using OpenCV.
OpenCV will be used to load images, add salt and pepper noise to the base image, and denoise the image using media blur.
Windows ML will be used to resize and tensorize the image into NCHW format, as well as perform image classification.
<img src="docs/screenshot.png" width="650"/>
- [Licenses](#licenses)
- [Getting Started](#getting-started)
- [Feedback]($feedback)
- [External Links](#links)
## Licenses
See [ThirdPartyNotices.txt](../../../../../ThirdPartyNotices.txt) for relevant license info.
## Getting Started
In order to build this sample, OpenCV will need to be built and linked into the WinML Samples Gallery. The OpenCV project is included as a submodule, and will need to be synced and built for your Platform Architecture and Configuration before it will appear in the Windows ML Samples Gallery. To do so follow these instructions:
- Launch a Visual Studio Developer Command Prompt.
- Navigate to the `repository root` directory.
- Sync submodules with `git submodule update --init --recursive`
- Launch Powershell with `powershell`
- Build the OpenCV project with
`.\external\tools\BuildOpenCV.ps1 -Architecture <ARCH> -Configuration <CONFIGURATION> -SetupDevEnv`
For example:
`.\external\tools\BuildOpenCV.ps1 -Architecture x64 -Configuration Debug`
- Launch the `WinMLSamplesGallery.sln` and build with the same **Architecture** and **Configuration** to see the sample appear.
You can check out the source [here](https://github.com/microsoft/Windows-Machine-Learning/blob/91e493d699df80a633654929418f41bab136ae1d/Samples/WinMLSamplesGallery/WinMLSamplesGalleryNative/OpenCVImage.cpp#L21).
## Feedback
Please file an issue [here](https://github.com/microsoft/Windows-Machine-Learning/issues/new) if you encounter any issues with this sample.
## External Links
- [Windows ML Library (WinML)](https://docs.microsoft.com/en-us/windows/ai/windows-ml/)
- [DirectML](https://github.com/microsoft/directml)
- [ONNX Model Zoo](https://github.com/onnx/models)
- [Windows UI Library (WinUI)](https://docs.microsoft.com/en-us/windows/apps/winui/)

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 368 KiB

Просмотреть файл

@ -401,6 +401,60 @@ namespace WinMLSamplesGallery.Samples
return builder.CreateModel();
}
public static LearningModel CastResizeAndTranspose(long newH, long newW, string interpolationMode)
{
var builder = LearningModelBuilder.Create(13)
.Inputs.Add(LearningModelBuilder.CreateTensorFeatureDescriptor("Input", TensorKind.UInt8, new long[] { -1, -1, -1, 3 }))
.Outputs.Add(LearningModelBuilder.CreateTensorFeatureDescriptor("Output", TensorKind.Float, new long[] { 1, 3, newH, newW }))
.Operators.Add(new LearningModelOperator("Cast")
.SetInput("input", "Input")
.SetAttribute("to", TensorInt64Bit.CreateFromIterable(new long[] { }, new long[] { (long)OnnxDataType.FLOAT }))
.SetOutput("output", "CastOutput"))
.Operators.Add(new LearningModelOperator("Resize")
.SetInput("X", "CastOutput")
.SetConstant("sizes", TensorInt64Bit.CreateFromIterable(new long[] { 4 }, new long[] { 1, newH, newW, 3 }))
.SetAttribute("mode", TensorString.CreateFromArray(new long[] { }, new string[] { interpolationMode }))
.SetOutput("Y", "ResizeOutput"))
.Operators.Add(new LearningModelOperator("Transpose")
.SetInput("data", "ResizeOutput")
.SetAttribute("perm", TensorInt64Bit.CreateFromArray(new long[] { 4 }, new long[] { 0, 3, 1, 2 }))
.SetOutput("transposed", "Output"));
return builder.CreateModel();
}
public static LearningModel CastResizeAndTranspose11(long newH, long newW, long n, long c, long h, long w, string interpolationMode)
{
long resizedW, resizedH, top, bottom, left, right;
CalculateCenterFillDimensions(h, w, newH, newW, out resizedW, out resizedH, out top, out bottom, out left, out right);
var builder = LearningModelBuilder.Create(13)
.Inputs.Add(LearningModelBuilder.CreateTensorFeatureDescriptor("Input", TensorKind.UInt8, new long[] { -1, -1, -1, 3 }))
.Outputs.Add(LearningModelBuilder.CreateTensorFeatureDescriptor("Output", TensorKind.Float, new long[] { 1, 3, newH, newW }))
.Operators.Add(new LearningModelOperator("Cast")
.SetInput("input", "Input")
.SetAttribute("to", TensorInt64Bit.CreateFromIterable(new long[] { }, new long[] { (long)OnnxDataType.FLOAT }))
.SetOutput("output", "CastOutput"))
.Operators.Add(new LearningModelOperator("Resize")
.SetInput("X", "CastOutput")
.SetConstant("roi", TensorFloat.CreateFromIterable(new long[] { 8 }, new float[] { 0, 0, 0, 0, 1, 1, 1, 1 }))
.SetConstant("scales", TensorFloat.CreateFromIterable(new long[] { 4 }, new float[] { 1, (float)(1 + resizedH) / (float)h, (float)(1 + resizedH) / (float)h, 1 }))
//.SetConstant("sizes", TensorInt64Bit.CreateFromIterable(new long[] { 4 }, new long[] { 1, 3, resizedH, resizedW }))
.SetAttribute("mode", TensorString.CreateFromArray(new long[] { }, new string[] { interpolationMode }))
.SetOutput("Y", "ResizeOutput"))
.Operators.Add(new LearningModelOperator("Slice")
.SetInput("data", "ResizeOutput")
.SetConstant("starts", TensorInt64Bit.CreateFromIterable(new long[] { 4 }, new long[] { 0, top, left, 0 }))
.SetConstant("ends", TensorInt64Bit.CreateFromIterable(new long[] { 4 }, new long[] { long.MaxValue, bottom, right, c }))
.SetOutput("output", "SliceOutput"))
.Operators.Add(new LearningModelOperator("Transpose")
.SetInput("data", "SliceOutput")
.SetAttribute("perm", TensorInt64Bit.CreateFromArray(new long[] { 4 }, new long[] { 0, 3, 1, 2 }))
.SetOutput("transposed", "Output"));
return builder.CreateModel();
}
public static LearningModel BasicTensorization(long newH, long newW, long n, long c, long h, long w, string interpolationMode, bool castFirst = false)
{
long resizedW, resizedH, top, bottom, left, right;
@ -424,7 +478,6 @@ namespace WinMLSamplesGallery.Samples
.SetConstant("roi", TensorFloat.CreateFromIterable(new long[] { 8 }, new float[] { 0, 0, 0, 0, 1, 1, 1, 1 }))
.SetConstant("scales", TensorFloat.CreateFromIterable(new long[] { 4 }, new float[] { 1, (float)(1 + resizedH) / (float)h, (float)(1 + resizedH) / (float)h, 1 }))
//.SetConstant("sizes", TensorInt64Bit.CreateFromIterable(new long[] { 4 }, new long[] { 1, 3, resizedH, resizedW }))
// Experimental Model Building API does not support inputs of string type, so cubic interpolation cant be set...
.SetAttribute("mode", TensorString.CreateFromArray(new long[] { }, new string[] { interpolationMode }))
.SetOutput("Y", "ResizeOutput"))
.Operators.Add(new LearningModelOperator("Slice")

Просмотреть файл

@ -8,8 +8,14 @@
<Platforms>x86;x64;arm64</Platforms>
<RuntimeIdentifiers>win10-x86;win10-x64;win10-arm64</RuntimeIdentifiers>
<UseWinUI>true</UseWinUI>
<UseLargeModels Condition="$(UseLargeModels) == ''">false</UseLargeModels>
<UseLargeModels Condition="$(UseLargeModels) == ''">False</UseLargeModels>
<OpenCVLib Condition="'$(Configuration)'=='Debug'">opencv_world454d.lib</OpenCVLib>
<OpenCVLib Condition="'$(Configuration)'=='Release'">opencv_world454.lib</OpenCVLib>
<OpenCVLibFullPath>$(SolutionDir)..\..\build\external\opencv\cmake_config\$(Platform)\lib\$(Configuration)\$(OpenCVLib)</OpenCVLibFullPath>
<UseOpenCV>False</UseOpenCV>
<UseOpenCV Condition="Exists('$(OpenCVLibFullPath)')">True</UseOpenCV>
<DefineConstants Condition="$(UseLargeModels)">$(DefineConstants);USE_LARGE_MODELS</DefineConstants>
<DefineConstants Condition="$(UseOpenCV)">$(DefineConstants);USE_OPENCV</DefineConstants>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
</PropertyGroup>
<ItemGroup>
@ -25,6 +31,7 @@
<None Remove="Samples\ImageClassifier.xaml" />
<None Remove="Samples\ImageEffects.xaml" />
<None Remove="Samples\ObjectDetector\ObjectDetector.xaml" />
<None Remove="Samples\OpenCVInterop\OpenCVInterop.xaml" />
<None Remove="Video.xaml" />
</ItemGroup>
<ItemGroup>
@ -72,6 +79,7 @@
<ItemGroup>
<None Include="Samples\ImageEffects\ImageEffects.xaml.cs" />
<None Include="Samples\ImageClassifier\ImageClassifier.xaml.cs" />
<None Include="Samples\OpenCVInterop\OpenCVInterop.xaml.cs" />
</ItemGroup>
<ItemGroup>
@ -131,10 +139,7 @@
<Page Update="Samples\ImageClassifier\ImageClassifier.xaml">
<Generator>MSBuild:Compile</Generator>
</Page>
</ItemGroup>
<ItemGroup>
<Page Update="Samples\ImageClassifier.xaml">
<Page Update="Samples\OpenCVInterop\OpenCVInterop.xaml">
<Generator>MSBuild:Compile</Generator>
</Page>
</ItemGroup>

Просмотреть файл

@ -9,6 +9,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Microsoft.AI.MachineLearning" Version="1.9.1" />
<PackageReference Include="Microsoft.Windows.CsWinRT" Version="1.3.5" />
</ItemGroup>
@ -19,6 +20,7 @@
<Target Name="GenerateProjection" BeforeTargets="DispatchToInnerBuilds;Build;CoreCompile">
<ItemGroup>
<WinMLSamplesGalleryNativeWinMDs Include="$(SolutionDir)WinMLSamplesGalleryNative\bin\neutral\WinMLSamplesGalleryNative.winmd" />
<WinMLSamplesGalleryNativeWinMDs Include="$(SolutionDir)packages\Microsoft.AI.MachineLearning.1.9.1\winmds\Microsoft.AI.MachineLearning.winmd" />
</ItemGroup>
<PropertyGroup>

Просмотреть файл

@ -1,29 +0,0 @@
#include "pch.h"
#include "Class.h"
#include "Class.g.cpp"
#include <Windows.h>
namespace winrt::WinMLSamplesGalleryNative::implementation
{
int32_t Class::MyProperty()
{
throw hresult_not_implemented();
}
void Class::MyProperty(int32_t /* value */)
{
throw hresult_not_implemented();
}
void Class::MessageBoxFromWin32()
{
MessageBox(
NULL,
(LPCWSTR)L"Resource not available\nDo you want to try again?",
(LPCWSTR)L"Account Details",
MB_ICONWARNING | MB_CANCELTRYCONTINUE | MB_DEFBUTTON2
);
}
}

Просмотреть файл

@ -0,0 +1,114 @@
#include "pch.h"
#include "OpenCVImage.h"
#include "OpenCVImage.g.cpp"
#include "winrt/Windows.Graphics.Imaging.h"
#include "winrt/Windows.Storage.Streams.h"
#include "winrt/Microsoft.AI.MachineLearning.h"
#include "WeakBuffer.h"
#include <wrl.h>
#include <sstream>
namespace wrl = ::Microsoft::WRL;
namespace details = ::Microsoft::AI::MachineLearning::Details;
namespace abi_wss = ABI::Windows::Storage::Streams;
namespace winrt::WinMLSamplesGalleryNative::implementation
{
OpenCVImage::OpenCVImage(winrt::hstring path)
{
#ifdef USE_OPENCV
image_ = cv::imread(winrt::to_string(path), cv::IMREAD_COLOR);
#endif
}
#ifdef USE_OPENCV
OpenCVImage::OpenCVImage(cv::Mat&& image) : image_(std::move(image)) {
}
#endif
winrt::Windows::Storage::Streams::IBuffer OpenCVImage::AsWeakBuffer()
{
#ifdef USE_OPENCV
auto cz_buffer = image_.ptr();
auto size = image_.total()* image_.elemSize();
winrt::com_ptr<abi_wss::IBuffer> ptr;
wrl::MakeAndInitialize<details::WeakBuffer<uint8_t>>(ptr.put(), cz_buffer, cz_buffer + size);
return ptr.as<winrt::Windows::Storage::Streams::IBuffer>();
#else
return nullptr;
#endif
}
winrt::Microsoft::AI::MachineLearning::ITensor OpenCVImage::AsTensor()
{
#ifdef USE_OPENCV
auto buffer = AsWeakBuffer();
return winrt::Microsoft::AI::MachineLearning::TensorUInt8Bit::CreateFromBuffer(
std::vector<int64_t>{ 1, image_.rows, image_.cols, 3 }, buffer);
#else
return nullptr;
#endif
}
winrt::Windows::Graphics::Imaging::SoftwareBitmap OpenCVImage::AsSoftwareBitmap()
{
#ifdef USE_OPENCV
cv::Mat bgra_image;
cv::cvtColor(image_, bgra_image, cv::COLOR_RGB2RGBA);
auto bgra_opencv_image = winrt::make<OpenCVImage>(std::move(bgra_image));
auto bgra_opencv_image_impl = bgra_opencv_image.as<implementation::OpenCVImage>();
auto bgra_buffer = bgra_opencv_image_impl->AsWeakBuffer();
auto software_bitmap =
winrt::Windows::Graphics::Imaging::SoftwareBitmap::CreateCopyFromBuffer(
bgra_buffer, winrt::Windows::Graphics::Imaging::BitmapPixelFormat::Bgra8, image_.cols, image_.rows);
return software_bitmap;
#else
return nullptr;
#endif
}
void OpenCVImage::Close()
{
#ifdef USE_OPENCV
image_.deallocate();
#endif
}
winrt::WinMLSamplesGalleryNative::OpenCVImage OpenCVImage::CreateFromPath(hstring const& path) {
return winrt::make<OpenCVImage>(path);
}
winrt::WinMLSamplesGalleryNative::OpenCVImage OpenCVImage::AddSaltAndPepperNoise(winrt::WinMLSamplesGalleryNative::OpenCVImage image) {
#ifdef USE_OPENCV
auto& image_mat = image.as<implementation::OpenCVImage>().get()->image_;
cv::Mat saltpepper_noise = cv::Mat::zeros(image_mat.rows, image_mat.cols, CV_8U);
randu(saltpepper_noise, 0, 255);
cv::Mat black = saltpepper_noise < 30;
cv::Mat white = saltpepper_noise > 225;
cv::Mat saltpepper_img = image_mat.clone();
saltpepper_img.setTo(255, white);
saltpepper_img.setTo(0, black);
return winrt::make<OpenCVImage>(std::move(saltpepper_img));
#else
return nullptr;
#endif
}
winrt::WinMLSamplesGalleryNative::OpenCVImage OpenCVImage::DenoiseMedianBlur(winrt::WinMLSamplesGalleryNative::OpenCVImage image) {
#ifdef USE_OPENCV
auto& image_mat = image.as<implementation::OpenCVImage>().get()->image_;
cv::Mat denoised;
cv::medianBlur(image_mat, denoised, 5);
return winrt::make<OpenCVImage>(std::move(denoised));
#else
return nullptr;
#endif
}
}

Просмотреть файл

@ -0,0 +1,38 @@
#pragma once
#include "OpenCVImage.g.h"
#ifdef USE_OPENCV
#include <opencv2/opencv.hpp>
#endif
namespace winrt::WinMLSamplesGalleryNative::implementation
{
struct OpenCVImage : OpenCVImageT<OpenCVImage>
{
OpenCVImage(winrt::hstring path);
#ifdef USE_OPENCV
OpenCVImage(cv::Mat&& image);
#endif
static winrt::WinMLSamplesGalleryNative::OpenCVImage CreateFromPath(hstring const& path);
static winrt::WinMLSamplesGalleryNative::OpenCVImage AddSaltAndPepperNoise(winrt::WinMLSamplesGalleryNative::OpenCVImage image);
static winrt::WinMLSamplesGalleryNative::OpenCVImage DenoiseMedianBlur(winrt::WinMLSamplesGalleryNative::OpenCVImage image);
winrt::Microsoft::AI::MachineLearning::ITensor AsTensor();
winrt::Windows::Graphics::Imaging::SoftwareBitmap AsSoftwareBitmap();
winrt::Windows::Storage::Streams::IBuffer AsWeakBuffer();
void Close();
private:
#ifdef USE_OPENCV
cv::Mat image_;
#endif
};
}
namespace winrt::WinMLSamplesGalleryNative::factory_implementation
{
struct OpenCVImage : OpenCVImageT<OpenCVImage, implementation::OpenCVImage>
{
};
}

Просмотреть файл

@ -0,0 +1,75 @@
// Copyright 2019 Microsoft Corporation. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef WEAK_BUFFER_H
#define WEAK_BUFFER_H
#include <wrl.h>
#include <wrl/client.h>
#include <windows.storage.streams.h>
#include <robuffer.h>
namespace Microsoft { namespace AI { namespace MachineLearning { namespace Details {
template <typename T>
struct WeakBuffer
: public Microsoft::WRL::RuntimeClass<
Microsoft::WRL::RuntimeClassFlags<Microsoft::WRL::WinRtClassicComMix | Microsoft::WRL::InhibitRoOriginateError>,
ABI::Windows::Storage::Streams::IBuffer,
Windows::Storage::Streams::IBufferByteAccess> {
InspectableClass(L"Microsoft.AI.MachineLearning.Details.WeakBuffer", BaseTrust)
private:
const T* m_p_begin;
const T* m_p_end;
public:
HRESULT RuntimeClassInitialize(_In_ const T* p_begin, _In_ const T* p_end) {
m_p_begin = p_begin;
m_p_end = p_end;
return S_OK;
}
virtual HRESULT STDMETHODCALLTYPE get_Capacity(
UINT32 * value)
{
if (value == nullptr) {
return E_POINTER;
}
*value = static_cast<uint32_t>(m_p_end - m_p_begin) * sizeof(T);
return S_OK;
}
virtual HRESULT STDMETHODCALLTYPE get_Length(
UINT32 * value)
{
if (value == nullptr) {
return E_POINTER;
}
*value = static_cast<uint32_t>(m_p_end - m_p_begin) * sizeof(T);
return S_OK;
}
virtual HRESULT STDMETHODCALLTYPE put_Length(
UINT32 /*value*/)
{
return E_NOTIMPL;
}
STDMETHOD(Buffer)(uint8_t** value)
{
if (value == nullptr) {
return E_POINTER;
}
*value = reinterpret_cast<uint8_t*>(const_cast<T*>(m_p_begin));
return S_OK;
}
};
}}}} // namespace Microsoft::AI::MachineLearning::Details
#endif // WEAK_BUFFER_H

Просмотреть файл

@ -1,10 +1,13 @@
namespace WinMLSamplesGalleryNative
{
[default_interface]
runtimeclass Class
runtimeclass OpenCVImage : Windows.Foundation.IClosable
{
Class();
Microsoft.AI.MachineLearning.ITensor AsTensor();
Windows.Graphics.Imaging.SoftwareBitmap AsSoftwareBitmap();
static void MessageBoxFromWin32();
static OpenCVImage CreateFromPath(String path);
static OpenCVImage AddSaltAndPepperNoise(OpenCVImage image);
static OpenCVImage DenoiseMedianBlur(OpenCVImage image);
}
}

Просмотреть файл

@ -1,5 +1,7 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Import Project="..\packages\Microsoft.AI.MachineLearning.1.9.1\build\native\Microsoft.AI.MachineLearning.props" Condition="Exists('..\packages\Microsoft.AI.MachineLearning.1.9.1\build\native\Microsoft.AI.MachineLearning.props')" />
<Import Project="..\packages\Microsoft.AI.DirectML.1.5.1\build\Microsoft.AI.DirectML.props" Condition="Exists('..\packages\Microsoft.AI.DirectML.1.5.1\build\Microsoft.AI.DirectML.props')" />
<Import Project="..\packages\Microsoft.Windows.CppWinRT.2.0.210930.14\build\native\Microsoft.Windows.CppWinRT.props" Condition="Exists('..\packages\Microsoft.Windows.CppWinRT.2.0.210930.14\build\native\Microsoft.Windows.CppWinRT.props')" />
<PropertyGroup Label="Globals">
<CppWinRTOptimized>true</CppWinRTOptimized>
@ -96,6 +98,32 @@
<ModuleDefinitionFile>WinMLSamplesGalleryNative.def</ModuleDefinitionFile>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup>
<ClCompile>
<AdditionalIncludeDirectories>$(MSBuildThisFileDirectory)../../build/native/include/;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
</ClCompile>
</ItemDefinitionGroup>
<!-- OpenCV -->
<PropertyGroup>
<OpenCVLib Condition="'$(Configuration)'=='Debug'">opencv_world454d.lib</OpenCVLib>
<OpenCVLib Condition="'$(Configuration)'=='Release'">opencv_world454.lib</OpenCVLib>
<OpenCVLibFullPath>$(SolutionDir)..\..\build\external\opencv\cmake_config\$(PlatformString)\lib\$(Configuration)\$(OpenCVLib)</OpenCVLibFullPath>
<UseOpenCV>False</UseOpenCV>
<UseOpenCV Condition="Exists('$(OpenCVLibFullPath)')">True</UseOpenCV>
</PropertyGroup>
<ItemDefinitionGroup Condition="$(UseOpenCV)">
<ClCompile>
<AdditionalIncludeDirectories>$(SolutionDir)..\..\build\external\opencv\cmake_config\$(PlatformString)\install\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalOptions>%(AdditionalOptions) /DUSE_OPENCV=1</AdditionalOptions>
</ClCompile>
<Link>
<AdditionalLibraryDirectories>$(SolutionDir)..\..\build\external\opencv\cmake_config\$(PlatformString)\lib\$(Configuration)</AdditionalLibraryDirectories>
<AdditionalDependencies>$(OpenCVLib);%(AdditionalDependencies)</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<PreprocessorDefinitions>_DEBUG;%(PreprocessorDefinitions)</PreprocessorDefinitions>
@ -111,11 +139,12 @@
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClInclude Include="Class.h" />
<ClInclude Include="OpenCVImage.h" />
<ClInclude Include="pch.h" />
<ClInclude Include="WeakBuffer.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="Class.cpp" />
<ClCompile Include="OpenCVImage.cpp" />
<ClCompile Include="pch.cpp">
<PrecompiledHeader>Create</PrecompiledHeader>
</ClCompile>
@ -137,6 +166,8 @@
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="..\packages\Microsoft.Windows.CppWinRT.2.0.210930.14\build\native\Microsoft.Windows.CppWinRT.targets" Condition="Exists('..\packages\Microsoft.Windows.CppWinRT.2.0.210930.14\build\native\Microsoft.Windows.CppWinRT.targets')" />
<Import Project="..\packages\Microsoft.AI.DirectML.1.5.1\build\Microsoft.AI.DirectML.targets" Condition="Exists('..\packages\Microsoft.AI.DirectML.1.5.1\build\Microsoft.AI.DirectML.targets')" />
<Import Project="..\packages\Microsoft.AI.MachineLearning.1.9.1\build\native\Microsoft.AI.MachineLearning.targets" Condition="Exists('..\packages\Microsoft.AI.MachineLearning.1.9.1\build\native\Microsoft.AI.MachineLearning.targets')" />
</ImportGroup>
<Target Name="EnsureNuGetPackageBuildImports" BeforeTargets="PrepareForBuild">
<PropertyGroup>
@ -144,6 +175,10 @@
</PropertyGroup>
<Error Condition="!Exists('..\packages\Microsoft.Windows.CppWinRT.2.0.210930.14\build\native\Microsoft.Windows.CppWinRT.props')" Text="$([System.String]::Format('$(ErrorText)', '..\packages\Microsoft.Windows.CppWinRT.2.0.210930.14\build\native\Microsoft.Windows.CppWinRT.props'))" />
<Error Condition="!Exists('..\packages\Microsoft.Windows.CppWinRT.2.0.210930.14\build\native\Microsoft.Windows.CppWinRT.targets')" Text="$([System.String]::Format('$(ErrorText)', '..\packages\Microsoft.Windows.CppWinRT.2.0.210930.14\build\native\Microsoft.Windows.CppWinRT.targets'))" />
<Error Condition="!Exists('..\packages\Microsoft.AI.DirectML.1.5.1\build\Microsoft.AI.DirectML.props')" Text="$([System.String]::Format('$(ErrorText)', '..\packages\Microsoft.AI.DirectML.1.5.1\build\Microsoft.AI.DirectML.props'))" />
<Error Condition="!Exists('..\packages\Microsoft.AI.DirectML.1.5.1\build\Microsoft.AI.DirectML.targets')" Text="$([System.String]::Format('$(ErrorText)', '..\packages\Microsoft.AI.DirectML.1.5.1\build\Microsoft.AI.DirectML.targets'))" />
<Error Condition="!Exists('..\packages\Microsoft.AI.MachineLearning.1.9.1\build\native\Microsoft.AI.MachineLearning.props')" Text="$([System.String]::Format('$(ErrorText)', '..\packages\Microsoft.AI.MachineLearning.1.9.1\build\native\Microsoft.AI.MachineLearning.props'))" />
<Error Condition="!Exists('..\packages\Microsoft.AI.MachineLearning.1.9.1\build\native\Microsoft.AI.MachineLearning.targets')" Text="$([System.String]::Format('$(ErrorText)', '..\packages\Microsoft.AI.MachineLearning.1.9.1\build\native\Microsoft.AI.MachineLearning.targets'))" />
</Target>
<Target Name="CopyNeutral" AfterTargets="Build">
<Copy SourceFiles="$(OutDir)\WinMLSamplesGalleryNative.winmd" DestinationFolder="$(SolutionDir)$(MSBuildProjectName)\bin\neutral\WinMLSamplesGalleryNative.winmd" />

Просмотреть файл

@ -1,4 +1,6 @@
<?xml version="1.0" encoding="utf-8"?>
<packages>
<package id="Microsoft.AI.DirectML" version="1.5.1" targetFramework="native" />
<package id="Microsoft.AI.MachineLearning" version="1.9.1" targetFramework="native" />
<package id="Microsoft.Windows.CppWinRT" version="2.0.210930.14" targetFramework="native" />
</packages>

212
ThirdPartyNotices.txt Normal file
Просмотреть файл

@ -0,0 +1,212 @@
THIRD-PARTY SOFTWARE NOTICES AND INFORMATION
Do Not Translate or Localize
This software incorporates third party material from the projects listed below.
- opencv : https://github.com/opencv/opencv
-------------------------------------------------------------------------------
opencv
-------------------------------------------------------------------------------
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Просмотреть файл

@ -25,7 +25,9 @@ strategy:
BuildConfiguration: Debug
pool:
name: DirectML_BuildPool
vmImage: 'windows-latest'
# pool:
# name: DirectML_BuildPool
# demands: agent.osversion -equals 10.0.17763
# CI trigger
@ -47,6 +49,12 @@ pr:
- Tools
steps:
- task: PowerShell@2
displayName: 'Clone Git Submodules'
inputs:
targetType: inline
script: git submodule update --init --recursive
- task: NuGetToolInstaller@1
displayName: 'Install NuGet 5.11.0'
inputs:
@ -58,6 +66,35 @@ steps:
targetType: inline
script: if (-not (Test-Path "${ENV:programfiles(x86)}\windows Kits\10\include\10.0.18362.0\")) { choco install windows-sdk-10-version-1903-all -y }
- task: PowerShell@1
displayName: OpenCV - Configure CMake
inputs:
scriptName: external/tools/CMakeConfigureOpenCV.ps1
workingDirectory: $(System.ArtifactsDirectory)
arguments: >
-Architecture $(BuildPlatform)
- task: VSBuild@1
displayName: 'OpenCV - Build'
inputs:
solution: 'build/external/opencv/cmake_config/$(BuildPlatform)/OpenCV.sln"'
vsVersion: "16.0"
msbuildArgs: '/p:Configuration=$(BuildConfiguration) /t:Build /p:LinkIncremental=false /p:DebugSymbols=false /p:DebugType=None'
configuration: '$(BuildConfiguration)'
msbuildArchitecture: x64
createLogFile: true
condition: succeededOrFailed()
- task: VSBuild@1
displayName: 'OpenCV - Install'
inputs:
solution: 'build/external/opencv/cmake_config/$(BuildPlatform)/INSTALL.vcxproj'
vsVersion: "16.0"
msbuildArgs: '/p:Configuration=$(BuildConfiguration) /p:LinkIncremental=false /p:DebugSymbols=false /p:DebugType=None'
configuration: '$(BuildConfiguration)'
msbuildArchitecture: x64
createLogFile: true
condition: succeededOrFailed()
- task: PowerShell@2
displayName: 'Restore WinMLSamplesGalleryNative Nuget Packages'
@ -74,19 +111,7 @@ steps:
inputs:
solution: 'Samples/WinMLSamplesGallery/WinMLSamplesGallery.sln'
vsVersion: "16.0"
msbuildArgs: '-v:diag /p:OutDir=$(System.DefaultWorkingDirectory)\bin\$(BuildPlatform)\$(BuildConfiguration)\WinMLSamplesGallery\ /p:WindowsTargetPlatformVersion=$(WindowsTargetPlatformVersion) /p:UseLargeModels=true /t:Restore,Clean,Build'
platform: '$(BuildPlatform)'
configuration: '$(BuildConfiguration)'
msbuildArchitecture: x64
createLogFile: true
condition: succeededOrFailed()
- task: VSBuild@1
displayName: 'Build WinMLSamplesGallery with Large Models'
inputs:
solution: 'Samples/WinMLSamplesGallery/WinMLSamplesGallery.sln'
vsVersion: "16.0"
msbuildArgs: '-v:diag /p:OutDir=$(System.DefaultWorkingDirectory)\bin\$(BuildPlatform)\$(BuildConfiguration)\WinMLSamplesGallery\ /p:UseLargeModels=true /p:WindowsTargetPlatformVersion=$(WindowsTargetPlatformVersion) /t:Restore,Clean,Build'
msbuildArgs: '/p:OutDir=$(System.DefaultWorkingDirectory)\bin\$(BuildPlatform)\$(BuildConfiguration)\WinMLSamplesGallery\ /p:WindowsTargetPlatformVersion=$(WindowsTargetPlatformVersion) /t:Restore,Clean,Build'
platform: '$(BuildPlatform)'
configuration: '$(BuildConfiguration)'
msbuildArchitecture: x64

1
external/opencv поставляемый Submodule

@ -0,0 +1 @@
Subproject commit 4223495e6cd67011f86b8ecd9be1fa105018f3b1

47
external/tools/BuildOpenCV.ps1 поставляемый Normal file
Просмотреть файл

@ -0,0 +1,47 @@
Param
(
# Build architecture.
[ValidateSet(
'x64',
'x86',
'ARM64')]
[string]$Architecture = 'x64',
# Build configuration.
[ValidateSet('Debug', 'Release')][string]$Configuration = 'Debug',
# Location to generate build files.
[string]$CMakeBuildDirectory = "$PSScriptRoot\..\..\build\external\opencv\cmake_config\$Architecture\",
# Cleans build files before proceeding.
[switch]$Clean,
[switch]$SetupDevEnv = $False
)
if ($Clean) {
Remove-Item -Recurse -Force $CMakeBuildDirectory
}
& $PSScriptRoot\CMakeConfigureOpenCV.ps1 -Architecture $Architecture
$msbuild = "msbuild"
if ($SetupDevEnv)
{
Install-Module VSSetup -Scope CurrentUser -Force
$latestVS = Get-VSSetupInstance -All -Prerelease | Sort-Object -Property InstallationVersion -Descending | Select-Object -First 1
if ($latestVS.InstallationVersion -like "15.*") {
$msbuild = "$($latestVS.InstallationPath)\MSBuild\15.0\Bin\msbuild.exe"
} else {
$msbuild = "$($latestVS.InstallationPath)\MSBuild\Current\Bin\msbuild.exe"
}
}
# Build OpenCV
$solution = $CMakeBuildDirectory + "OpenCV.sln"
& $msbuild /p:Configuration=$Configuration /t:Build /p:LinkIncremental=false /p:DebugSymbols=false /p:DebugType=None $solution
# Install
$installProject = $CMakeBuildDirectory + "INSTALL.vcxproj"
& $msbuild /p:Configuration=$Configuration /p:LinkIncremental=false /p:DebugSymbols=false /p:DebugType=None $installProject

58
external/tools/CMakeConfigureOpenCV.ps1 поставляемый Normal file
Просмотреть файл

@ -0,0 +1,58 @@
Param
(
# Build architecture.
[ValidateSet(
'x64',
'x86',
'ARM64')]
[string]$Architecture = 'x64',
# CMake generator.
[ValidateSet(
'Visual Studio 15 2017',
'Visual Studio 16 2019')]
[string]$Generator='Visual Studio 16 2019',
# Location to generate build files.
[string]$BuildDirectory = "$PSScriptRoot\..\..\build\external\opencv\cmake_config\$Architecture",
# Cleans build files before proceeding.
[switch]$Clean
)
$Args = New-Object Collections.Generic.List[String]
if ($Architecture -eq 'x86') {
$Args.Add("-A Win32")
}
else {
$Args.Add("-A " + $Architecture)
}
$Args.Add("-G " + $Generator)
$Args.Add("-DCMAKE_SYSTEM_NAME=Windows")
$Args.Add("-DCMAKE_SYSTEM_VERSION=10.0")
$Args.Add("-DWITH_OPENCL=OFF")
$Args.Add("-DWITH_FFMPEG=OFF")
$Args.Add("-DWITH_CUDA=OFF")
$Args.Add("-DBUILD_EXAMPLES=OFF")
$Args.Add("-DBUILD_TESTS=OFF")
$Args.Add("-DBUILD_opencv_apps=OFF")
$Args.Add("-DBUILD_DOCS=OFF")
$Args.Add("-DBUILD_PERF_TESTS=OFF")
$Args.Add("-DBUILD_opencv_world=ON")
if ($Architecture -eq 'x64') {
$Args.Add("-DCMAKE_SYSTEM_PROCESSOR=AMD64")
}
else {
$Args.Add("-DCMAKE_SYSTEM_PROCESSOR=" + $Architecture)
}
if ($Clean) {
$Args.Add("--clean")
}
$Args.Add("-B " + $BuildDirectory)
cmake $Args "$PSScriptRoot\..\opencv"