This commit is contained in:
Sheil Kumar 2021-10-29 09:30:47 -07:00
Родитель 1020a0f612
Коммит 34316af986
11 изменённых файлов: 709 добавлений и 4 удалений

Просмотреть файл

@ -104,7 +104,10 @@ These advanced samples show how to use various binding and evaluation features i
- **[PyTorch Data Analysis](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: The tutorial shows how to solve a classification task with a neural network using the PyTorch library, export the model to ONNX format and deploy the model with the Windows Machine Learning application that can run on any Windows device.
- **[PyTorch Image Classification](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: The tutorial shows how to train an image classification neural network model using PyTorch, export the model to the ONNX format, and deploy it in a Windows Machine Learning application running locally on your Windows device.
- **[YoloV4 Object Detection](https://github.com/Microsoft/Windows-AppConsult-Samples-UWP/tree/master/PlaneIdentifier)**: This tutorial shows how to build a UWP C# app that uses the YOLOv4 model to detect objects in video streams.
### Interop with other external Image Processing Libraries
- **[OpenCV Interop](Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/OpenCVInterop)**: This sample demonstrates how to interop between [Windows ML](https://docs.microsoft.com/en-us/windows/ai/windows-ml/) and [OpenCV](https://github.com/opencv/opencv).
- **[ImageSharp Interop](Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/ImageSHarpInterop)**: This sample demonstrates how to interop between [Windows ML](https://docs.microsoft.com/en-us/windows/ai/windows-ml/) and [ImageSharp](https://github.com/SixLabors/ImageSharp).
## Developer Tools

Просмотреть файл

@ -31,6 +31,9 @@ namespace WinMLSamplesGallery
case "OpenCVInterop":
SampleFrame.Navigate(typeof(Samples.OpenCVInterop));
break;
case "ImageSharpInterop":
SampleFrame.Navigate(typeof(Samples.ImageSharpInterop));
break;
}
if (sampleMetadata.Docs.Count > 0)
DocsHeader.Visibility = Visibility.Visible;

Просмотреть файл

@ -36,14 +36,24 @@
]
},
{
"Title": "OpenCV Interop",
"DescriptionShort": "The sample uses Windows ML to classify images that have been denoised using OpenCV.",
"Title": "OpenCV",
"DescriptionShort": "The sample uses Windows ML to classify images that have been denoised natively using OpenCV.",
"Description": "This sample demonstrates interop between Windows ML and OpenCV. The sample classifes images that have been denoised using OpenCV's medianBlur using the SqueezeNet model on Windows ML. Choose an image to get started.",
"Icon": "\uE155",
"Tag": "OpenCVInterop",
"XAMLGithubLink": "https://github.com/microsoft/Windows-Machine-Learning/blob/master/Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/OpenCVInterop/OpenCVInterop.xaml",
"CSharpGithubLink": "https://github.com/microsoft/Windows-Machine-Learning/blob/master/Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/OpenCVInterop/OpenCVInterop.xaml.cs",
"Docs": []
},
{
"Title": "ImageSharp",
"DescriptionShort": "The sample uses Windows ML to classify images that have been loaded by the managed ImageSharp library.",
"Description": "The sample uses Windows ML to classify images that have been rotated by the managed ImageSharp library. Choose an image to get started.",
"Icon": "\uE155",
"Tag": "ImageSharpInterop",
"XAMLGithubLink": "https://github.com/microsoft/Windows-Machine-Learning/blob/master/Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/ImageSharpInterop/ImageSharpInterop.xaml",
"CSharpGithubLink": "https://github.com/microsoft/Windows-Machine-Learning/blob/master/Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/ImageSharpInterop/ImageSharpInterop.xaml.cs",
"Docs": []
}
]
}

Просмотреть файл

@ -0,0 +1,49 @@
using System;
using System.Linq;
using System.Runtime.InteropServices.WindowsRuntime;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.Processing;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Advanced;
using SixLabors.ImageSharp.Memory;
using Microsoft.AI.MachineLearning;
using Windows.Graphics.Imaging;
namespace ImageSharpExtensrions
{
public static class ImageExtensions
{
public static Windows.Storage.Streams.IBuffer AsBuffer<TPixel>(this Image<TPixel> img) where TPixel : unmanaged, IPixel<TPixel>
{
var memoryGroup = img.GetPixelMemoryGroup();
var memory = memoryGroup.ToArray()[0];
var pixelData = System.Runtime.InteropServices.MemoryMarshal.AsBytes(memory.Span).ToArray(); // Can we get rid of this?
var buffer = pixelData.AsBuffer();
return buffer;
}
public static ITensor AsTensor<TPixel>(this Image<TPixel> img) where TPixel : unmanaged, IPixel<TPixel>
{
var buffer = img.AsBuffer();
var shape = new long[] { 1, buffer.Length };
var tensor = TensorUInt8Bit.CreateFromBuffer(shape, buffer);
return tensor;
}
public static SoftwareBitmap AsSoftwareBitmap<TPixel>(this Image<TPixel> img) where TPixel : unmanaged, IPixel<TPixel>
{
var buffer = img.AsBuffer();
var format = BitmapPixelFormat.Unknown;
if (typeof(TPixel) == typeof(Bgra32))
{
format = BitmapPixelFormat.Bgra8;
}
var softwareBitmap = SoftwareBitmap.CreateCopyFromBuffer(buffer, BitmapPixelFormat.Bgra8, img.Width, img.Height);
return softwareBitmap;
}
}
}

Просмотреть файл

@ -0,0 +1,136 @@
<Page
x:Class="WinMLSamplesGallery.Samples.ImageSharpInterop"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:local_controls="using:WinMLSamplesGallery.Controls"
xmlns:local_samples="using:WinMLSamplesGallery.Samples"
mc:Ignorable="d"
Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
<Page.Resources>
<DataTemplate x:Key="ImageTemplate" x:DataType="local_controls:Thumbnail">
<Grid Width="200" Height="204">
<Image Stretch="UniformToFill" Source="{x:Bind ImageUri}" HorizontalAlignment="Center" VerticalAlignment="Center" Height="204"/>
</Grid>
</DataTemplate>
<DataTemplate x:Name="InferenceResultsTemplate" x:DataType="local_controls:Prediction">
<StackPanel Orientation="Horizontal">
<TextBlock Width="414"
FontSize="14"
Foreground="Black"
Padding="0,1,1,1"
Typography.Capitals="AllSmallCaps"
Typography.StylisticSet4="True"
TextTrimming="CharacterEllipsis">
<Run Text="[" />
<Run Text="{Binding Index}" />
<Run Text="] " />
<Run Text="{Binding Name}" />
</TextBlock>
<TextBlock Width="120"
FontSize="14"
Foreground="Black"
Padding="0,1,1,1"
Typography.Capitals="AllSmallCaps"
Typography.StylisticSet4="True">
<Run Text="p =" />
<Run Text="{Binding Probability}" />
</TextBlock>
</StackPanel>
</DataTemplate>
<DataTemplate x:Name="AllModelsTemplate" x:DataType="local_samples:ClassifierViewModel">
<Grid Background="#e6e6e6" BorderBrush="#12bef6" BorderThickness="1">
<TextBlock FontSize="14" Text="{x:Bind Title}"
Typography.Capitals="AllSmallCaps"
Typography.StylisticSet4="True"
VerticalAlignment="Top"
Padding="10,2,10,2"
MinWidth="136"
/>
</Grid>
</DataTemplate>
</Page.Resources>
<Grid>
<ScrollViewer
ZoomMode="Disabled"
IsVerticalScrollChainingEnabled="True"
HorizontalScrollMode="Enabled" HorizontalScrollBarVisibility="Disabled"
VerticalScrollMode="Enabled" VerticalScrollBarVisibility="Visible">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>
<StackPanel Grid.Row="0" Orientation="Horizontal" Padding="0,10,0,0">
<StackPanel Orientation="Vertical">
<StackPanel Orientation="Horizontal" HorizontalAlignment="Left">
<Button FontFamily="Segoe MDL2 Assets" Content="&#xE1A5;" Width="97" Height="50" HorizontalAlignment="Left" Click="OpenButton_Clicked" />
<Grid Padding="5,0,0,0">
<ComboBox x:Name="DeviceComboBox" SelectedIndex="0" Background="LightGray" PlaceholderText="Device" Height="50" Width="97"
SelectionChanged="DeviceComboBox_SelectionChanged">
<TextBlock Text="CPU" FontSize="18" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True"/>
<TextBlock Text="DML" FontSize="18" Typography.Capitals="AllSmallCaps" Typography.StylisticSet4="True"/>
</ComboBox>
</Grid>
</StackPanel>
<GridView
x:Name="BasicGridView"
ItemTemplate="{StaticResource ImageTemplate}"
IsItemClickEnabled="True"
SelectionChanged="SampleInputsGridView_SelectionChanged"
SelectionMode="Single"
Padding="0,6,0,0"
HorizontalAlignment="Center">
<GridView.ItemsPanel>
<ItemsPanelTemplate>
<StackPanel Orientation="Vertical" />
</ItemsPanelTemplate>
</GridView.ItemsPanel>
<GridView.Items>
<local_controls:Thumbnail ImageUri="ms-appx:///InputData/kitten.png" />
</GridView.Items>
</GridView>
</StackPanel>
<Slider x:Name="RotationSlider" IsEnabled="False" ValueChanged="RotationSlider_ValueChanged" Orientation="Vertical" TickFrequency="60" TickPlacement="Outside" Maximum="360" Minimum="0"/>
<Border BorderBrush="LightGray" Padding="5,0,0,0">
<Image x:Name="InputImage" Stretch="UniformToFill" Height="260" HorizontalAlignment="Center"/>
</Border>
</StackPanel>
<StackPanel Orientation="Horizontal" Grid.Row="2"
Padding="0,7,0,0">
<ListView
x:Name="InferenceResults"
HorizontalAlignment="Stretch"
Padding="0,2,0,0"
ItemTemplate="{StaticResource InferenceResultsTemplate}"
IsItemClickEnabled="False"
SingleSelectionFollowsFocus="False">
<ListView.ItemContainerStyle>
<Style TargetType="ListViewItem">
<Setter Property="Margin" Value="1,1,1,1"/>
<Setter Property="MinHeight" Value="0"/>
</Style>
</ListView.ItemContainerStyle>
<ListView.ItemsPanel>
<ItemsPanelTemplate>
<ItemsWrapGrid x:Name="MaxItemsWrapGrid" Orientation="Vertical" HorizontalAlignment="Stretch"/>
</ItemsPanelTemplate>
</ListView.ItemsPanel>
</ListView>
<local_controls:PerformanceMonitor x:Name="PerformanceMetricsMonitor"/>
</StackPanel>
</Grid>
</ScrollViewer>
</Grid>
</Page>

Просмотреть файл

@ -0,0 +1,259 @@
using Microsoft.AI.MachineLearning;
using Microsoft.UI.Xaml;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Data;
using Microsoft.UI.Xaml.Media;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices.WindowsRuntime;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.Foundation.Metadata;
using Windows.Graphics.Imaging;
using Windows.Media;
using Windows.Storage;
using Windows.UI;
using WinMLSamplesGallery.Common;
using WinMLSamplesGallery.Controls;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using ImageSharpExtensrions;
using SixLabors.ImageSharp.Processing;
namespace WinMLSamplesGallery.Samples
{
/// <summary>
/// An empty page that can be used on its own or navigated to within a Frame.
/// </summary>
public sealed partial class ImageSharpInterop : Page
{
const long BatchSize = 1;
const long TopK = 10;
const long Height = 224;
const long Width = 224;
const long Channels = 4;
private LearningModelSession _inferenceSession;
private LearningModelSession _tensorizationSession;
private LearningModelSession _postProcessingSession;
private static Dictionary<long, string> _imagenetLabels;
private Image<Bgra32> CurrentImage { get; set; }
#pragma warning disable CA1416 // Validate platform compatibility
private LearningModelDeviceKind SelectedDeviceKind
{
get
{
return (DeviceComboBox.SelectedIndex == 0) ?
LearningModelDeviceKind.Cpu :
LearningModelDeviceKind.DirectXHighPerformance;
}
}
#pragma warning restore CA1416 // Validate platform compatibility
public ImageSharpInterop()
{
this.InitializeComponent();
_imagenetLabels = LoadLabels("ms-appx:///InputData/sysnet.txt");
var tensorizationModel = TensorizationModels.BasicTensorization(Height, Width, BatchSize, Channels, Height, Width, "nearest");
_tensorizationSession = CreateLearningModelSession(tensorizationModel, SelectedDeviceKind);
_inferenceSession = CreateLearningModelSession("ms-appx:///Models/squeezenet1.1-7.onnx");
_postProcessingSession = CreateLearningModelSession(TensorizationModels.SoftMaxThenTopK(TopK));
}
#pragma warning disable CA1416 // Validate platform compatibility
private (IEnumerable<string>, IReadOnlyList<float>) Classify(Image<Bgra32> image, float angle)
{
long start, stop;
PerformanceMetricsMonitor.ClearLog();
// Tensorize
start = HighResolutionClock.UtcNow();
image.Mutate(ctx => ctx.Rotate(angle));
var resizeOptions = new ResizeOptions()
{
Mode = ResizeMode.Crop,
Size = new SixLabors.ImageSharp.Size((int)Width, (int)Height)
};
image.Mutate(ctx => ctx.Resize(resizeOptions));
object input = image.AsTensor();
var tensorizationResults = Evaluate(_tensorizationSession, input);
object tensorizedOutput = tensorizationResults.Outputs.First().Value;
stop = HighResolutionClock.UtcNow();
var tensorizeDuration = HighResolutionClock.DurationInMs(start, stop);
// Inference
start = HighResolutionClock.UtcNow();
var inferenceResults = Evaluate(_inferenceSession, tensorizedOutput);
var inferenceOutput = inferenceResults.Outputs.First().Value;
stop = HighResolutionClock.UtcNow();
var inferenceDuration = HighResolutionClock.DurationInMs(start, stop);
// PostProcess
start = HighResolutionClock.UtcNow();
var postProcessedOutputs = Evaluate(_postProcessingSession, inferenceOutput);
var topKValues = (TensorFloat)postProcessedOutputs.Outputs["TopKValues"];
var topKIndices = (TensorInt64Bit)postProcessedOutputs.Outputs["TopKIndices"];
// Return results
var probabilities = topKValues.GetAsVectorView();
var indices = topKIndices.GetAsVectorView();
var labels = indices.Select((index) => _imagenetLabels[index]);
stop = HighResolutionClock.UtcNow();
var postProcessDuration = HighResolutionClock.DurationInMs(start, stop);
PerformanceMetricsMonitor.Log("Tensorize", tensorizeDuration);
PerformanceMetricsMonitor.Log("Pre-process", 0);
PerformanceMetricsMonitor.Log("Inference", inferenceDuration);
PerformanceMetricsMonitor.Log("Post-process", postProcessDuration);
RenderingHelpers.BindSoftwareBitmapToImageControl(InputImage, image.AsSoftwareBitmap());
image.Dispose();
return (labels, probabilities);
}
private static LearningModelEvaluationResult Evaluate(LearningModelSession session, object input)
{
// Create the binding
var binding = new LearningModelBinding(session);
// Create an emoty output, that will keep the output resources on the GPU
// It will be chained into a the post processing on the GPU as well
var output = TensorFloat.Create();
// Bind inputs and outputs
// For squeezenet these evaluate to "data", and "squeezenet0_flatten0_reshape0"
string inputName = session.Model.InputFeatures[0].Name;
string outputName = session.Model.OutputFeatures[0].Name;
binding.Bind(inputName, input);
var outputBindProperties = new PropertySet();
outputBindProperties.Add("DisableTensorCpuSync", PropertyValue.CreateBoolean(true));
binding.Bind(outputName, output, outputBindProperties);
// Evaluate
return session.Evaluate(binding, "");
}
private LearningModelSession CreateLearningModelSession(string modelPath)
{
var model = CreateLearningModel(modelPath);
var session = CreateLearningModelSession(model);
return session;
}
private LearningModelSession CreateLearningModelSession(LearningModel model, Nullable<LearningModelDeviceKind> kind = null)
{
var device = new LearningModelDevice(kind ?? SelectedDeviceKind);
var options = new LearningModelSessionOptions()
{
CloseModelOnSessionCreation = true // Close the model to prevent extra memory usage
};
var session = new LearningModelSession(model, device, options);
return session;
}
private static LearningModel CreateLearningModel(string modelPath)
{
var uri = new Uri(modelPath);
var file = StorageFile.GetFileFromApplicationUriAsync(uri).GetAwaiter().GetResult();
return LearningModel.LoadFromStorageFileAsync(file).GetAwaiter().GetResult();
}
#pragma warning restore CA1416 // Validate platform compatibility
private static Dictionary<long, string> LoadLabels(string csvFile)
{
var file = StorageFile.GetFileFromApplicationUriAsync(new Uri(csvFile)).GetAwaiter().GetResult();
var text = Windows.Storage.FileIO.ReadTextAsync(file).GetAwaiter().GetResult();
var labels = new Dictionary<long, string>();
var records = text.Split(Environment.NewLine);
foreach (var record in records)
{
var fields = record.Split(",", 2);
if (fields.Length == 2)
{
var index = long.Parse(fields[0]);
labels[index] = fields[1];
}
}
return labels;
}
private void TryPerformInference(bool reloadImages = true)
{
if (CurrentImage != null)
{
// Classify
var angle = (float)RotationSlider.Value;
var (labels, probabilities) = Classify(CurrentImage.Clone(), angle);
// Render the classification and probabilities
RenderInferenceResults(labels, probabilities);
}
}
private void RenderInferenceResults(IEnumerable<string> labels, IReadOnlyList<float> probabilities)
{
var indices = Enumerable.Range(1, probabilities.Count);
var zippedResults = indices.Zip(labels.Zip(probabilities));
var results = zippedResults.Select(
(zippedResult) =>
new Controls.Prediction {
Index = zippedResult.First,
Name = zippedResult.Second.First.Trim(new char[] { ',' }),
Probability = zippedResult.Second.Second.ToString("E4")
});
InferenceResults.ItemsSource = results;
InferenceResults.SelectedIndex = 0;
}
private void OpenButton_Clicked(object sender, RoutedEventArgs e)
{
var storageFile = ImageHelper.PickImageFiles();
if (storageFile != null)
{
BasicGridView.SelectedItem = null;
SetCurrentImage(storageFile.Path);
TryPerformInference();
}
}
private void SampleInputsGridView_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
var gridView = (GridView)sender;
var thumbnail = (Thumbnail)gridView.SelectedItem;
if (thumbnail != null)
{
var file = StorageFile.GetFileFromApplicationUriAsync(new Uri(thumbnail.ImageUri)).GetAwaiter().GetResult();
SetCurrentImage(file.Path);
TryPerformInference();
}
}
private void SetCurrentImage(string path)
{
if (CurrentImage != null) CurrentImage.Dispose();
RotationSlider.IsEnabled = true;
CurrentImage = SixLabors.ImageSharp.Image.Load<Bgra32>(path);
RenderingHelpers.BindSoftwareBitmapToImageControl(InputImage, CurrentImage.AsSoftwareBitmap());
}
private void DeviceComboBox_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
TryPerformInference();
}
private void RotationSlider_ValueChanged(object sender, Microsoft.UI.Xaml.Controls.Primitives.RangeBaseValueChangedEventArgs e)
{
TryPerformInference();
}
}
}

Просмотреть файл

@ -0,0 +1,34 @@
# WinML Samples Gallery: ImageSharp Interop
This sample demonstrates how to interop between [Windows ML](https://docs.microsoft.com/en-us/windows/ai/windows-ml/) and [ImageSharp](https://docs.sixlabors.com/articles/imagesharp/index.html).
ImageSharp is a new, fully featured, fully managed, cross-platform, 2D graphics library.
The demo will run [SqueezeNet](https://github.com/onnx/models/tree/master/vision/classification/squeezenet) image classification in WindowsML and consume images arbitrarily rotated using ImageSharp.
ImageSharp will be used to load, rotate, resize and crop images.
Windows ML will be used to tensorize the image into NCHW format and perform image classification.
<img src="docs/screenshot.png" width="650"/>
- [Licenses](#licenses)
- [Getting Started](#getting-started)
- [Feedback]($feedback)
- [External Links](#links)
## Licenses
See [ThirdPartyNotices.txt](../../../../../ThirdPartyNotices.txt) for relevant license info.
## Getting Started
You can check out the source [here](https://github.com/microsoft/Windows-Machine-Learning/blob/master/Samples/WinMLSamplesGallery/WinMLSamplesGallery/Samples/ImageSharpInterop/ImageSharpInterop.xaml.cs).
## Feedback
Please file an issue [here](https://github.com/microsoft/Windows-Machine-Learning/issues/new) if you encounter any issues with this sample.
## External Links
- [Windows ML Library (WinML)](https://docs.microsoft.com/en-us/windows/ai/windows-ml/)
- [DirectML](https://github.com/microsoft/directml)
- [ONNX Model Zoo](https://github.com/onnx/models)
- [Windows UI Library (WinUI)](https://docs.microsoft.com/en-us/windows/apps/winui/)

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 368 KiB

Просмотреть файл

@ -36,7 +36,7 @@ In order to build this sample, OpenCV will need to be built and linked into the
- Launch the `WinMLSamplesGallery.sln` and build with the same **Architecture** and **Configuration** to see the sample appear.
You can check out the source [here](https://github.com/microsoft/Windows-Machine-Learning/blob/91e493d699df80a633654929418f41bab136ae1d/Samples/WinMLSamplesGallery/WinMLSamplesGalleryNative/OpenCVImage.cpp#L21).
You can check out the source [here](https://github.com/microsoft/Windows-Machine-Learning/blob/6840e7bd312b09ecd9f51127758f5168e4f844b9/Samples/WinMLSamplesGallery/WinMLSamplesGalleryNative/OpenCVImage.cpp#L19).
## Feedback
Please file an issue [here](https://github.com/microsoft/Windows-Machine-Learning/issues/new) if you encounter any issues with this sample.

Просмотреть файл

@ -32,6 +32,7 @@
<None Remove="Samples\ImageEffects.xaml" />
<None Remove="Samples\ObjectDetector\ObjectDetector.xaml" />
<None Remove="Samples\OpenCVInterop\OpenCVInterop.xaml" />
<None Remove="Samples\ImageSharpInterop\ImageSharpInterop.xaml" />
<None Remove="Video.xaml" />
</ItemGroup>
<ItemGroup>
@ -73,6 +74,7 @@
<PackageReference Include="Microsoft.AI.MachineLearning" Version="1.9.1" />
<PackageReference Include="Microsoft.ProjectReunion" Version="0.8.4" />
<PackageReference Include="Microsoft.Windows.CsWinRT" Version="1.3.5" />
<PackageReference Include="SixLabors.ImageSharp" Version="1.0.4" />
<Manifest Include="$(ApplicationManifest)" />
</ItemGroup>
@ -80,6 +82,7 @@
<None Include="Samples\ImageEffects\ImageEffects.xaml.cs" />
<None Include="Samples\ImageClassifier\ImageClassifier.xaml.cs" />
<None Include="Samples\OpenCVInterop\OpenCVInterop.xaml.cs" />
<None Include="Samples\ImageSharpInterop\ImageSharpInterop.xaml.cs" />
</ItemGroup>
<ItemGroup>
@ -142,6 +145,9 @@
<Page Update="Samples\OpenCVInterop\OpenCVInterop.xaml">
<Generator>MSBuild:Compile</Generator>
</Page>
<Page Update="Samples\ImageSharpInterop\ImageSharpInterop.xaml">
<Generator>MSBuild:Compile</Generator>
</Page>
</ItemGroup>
<ItemGroup>

Просмотреть файл

@ -4,7 +4,7 @@ Do Not Translate or Localize
This software incorporates third party material from the projects listed below.
- opencv : https://github.com/opencv/opencv
- ImageSharp : https://github.com/SixLabors/ImageSharp
-------------------------------------------------------------------------------
opencv
-------------------------------------------------------------------------------
@ -210,3 +210,208 @@ opencv
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-------------------------------------------------------------------------------
ImageSharp
-------------------------------------------------------------------------------
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright (c) Six Labors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.