fix sample so it works on the GPU (#505)
This commit is contained in:
Родитель
673410d94f
Коммит
b5157f8441
|
@ -77,6 +77,7 @@ class Network(nn.Module):
|
|||
|
||||
# Instantiate a neural network model
|
||||
model = Network()
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Define the loss function with Classification Cross-Entropy loss and an optimizer with Adam optimizer
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
@ -99,7 +100,8 @@ def testAccuracy():
|
|||
for data in test_loader:
|
||||
images, labels = data
|
||||
# Run the model on the test set to predict labels
|
||||
outputs = model(images)
|
||||
outputs = model(images.to(device))
|
||||
outputs = outputs.cpu()
|
||||
# The label with the highest energy will be our prediction
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
|
@ -116,7 +118,6 @@ def train(num_epochs):
|
|||
best_accuracy = 0.0
|
||||
|
||||
# Define your execution device
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
print("The model will be running on", device, "device")
|
||||
# Convert model parameters and buffers to CPU or Cuda
|
||||
model.to(device)
|
||||
|
@ -257,7 +258,3 @@ if __name__ == "__main__":
|
|||
|
||||
# Conversion to ONNX
|
||||
Convert_ONNX()
|
||||
|
||||
|
||||
|
||||
|
Загрузка…
Ссылка в новой задаче