Xbox-GDK-Samples/Kits/DirectXTex/DirectXTexHDR.cpp

1352 строки
40 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXTexHDR.cpp
//
// DirectX Texture Library - Radiance HDR (RGBE) file format reader/writer
//
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkId=248926
//-------------------------------------------------------------------------------------
#include "DirectXTexP.h"
//
// In theory HDR (RGBE) Radiance files can have any of the following data orientations
//
// +X width +Y height
// +X width -Y height
// -X width +Y height
// -X width -Y height
// +Y height +X width
// -Y height +X width
// +Y height -X width
// -Y height -X width
//
// All HDR files we've encountered are always written as "-Y height +X width", so
// we support only that one as that's what other Radiance parsing code does as well.
//
//Uncomment to disable the use of adapative RLE encoding when writing an HDR. Used for testing only.
//#define DISABLE_COMPRESS
//Uncomment to use "old colors" standard RLE encoding when writing an HDR. Used for testing only.
//#define WRITE_OLD_COLORS
using namespace DirectX;
#ifndef _WIN32
#include <cstdarg>
#define strncpy_s strncpy
#define sscanf_s sscanf
#endif
namespace
{
const char g_Signature[] = "#?RADIANCE";
// This is the official header signature for the .HDR (RGBE) file format.
const char g_AltSignature[] = "#?RGBE";
// This is a common variant header signature that is otherwise exactly the same format.
const char g_Format[] = "FORMAT=";
const char g_Exposure[] = "EXPOSURE=";
const char g_sRGBE[] = "32-bit_rle_rgbe";
const char g_sXYZE[] = "32-bit_rle_xyze";
const char g_Header[] =
"#?RADIANCE\n"\
"FORMAT=32-bit_rle_rgbe\n"\
"\n"\
"-Y %u +X %u\n";
inline size_t FindEOL(const char* str, size_t maxlen) noexcept
{
size_t pos = 0;
while (pos < maxlen)
{
if (str[pos] == '\n')
return pos;
else if (str[pos] == '\0')
return size_t(-1);
++pos;
}
return 0;
}
#ifndef _WIN32
template<size_t sizeOfBuffer>
inline int sprintf_s(char(&buffer)[sizeOfBuffer], const char* format, ...)
{
// This is adapter code. It is not a full implementation of sprintf_s!
va_list ap;
va_start(ap, format);
int result = vsprintf(buffer, format, ap);
va_end(ap);
return result;
}
#endif
//-------------------------------------------------------------------------------------
// Decodes HDR header
//-------------------------------------------------------------------------------------
HRESULT DecodeHDRHeader(
_In_reads_bytes_(size) const void* pSource,
size_t size,
_Out_ TexMetadata& metadata,
size_t& offset,
float& exposure) noexcept
{
if (!pSource)
return E_INVALIDARG;
memset(&metadata, 0, sizeof(TexMetadata));
exposure = 1.f;
if (size < sizeof(g_Signature))
{
return HRESULT_E_INVALID_DATA;
}
// Verify magic signature
if (memcmp(pSource, g_Signature, sizeof(g_Signature) - 1) != 0
&& memcmp(pSource, g_AltSignature, sizeof(g_AltSignature) - 1) != 0)
{
return E_FAIL;
}
// Process first part of header
bool formatFound = false;
auto info = static_cast<const char*>(pSource);
while (size > 0)
{
if (*info == '\n')
{
++info;
--size;
break;
}
constexpr size_t formatLen = sizeof(g_Format) - 1;
constexpr size_t exposureLen = sizeof(g_Exposure) - 1;
if ((size > formatLen) && memcmp(info, g_Format, formatLen) == 0)
{
info += formatLen;
size -= formatLen;
// Trim whitespace
while (*info == ' ' || *info == '\t')
{
if (--size == 0)
return E_FAIL;
++info;
}
static_assert(sizeof(g_sRGBE) == sizeof(g_sXYZE), "Format strings length mismatch");
constexpr size_t encodingLen = sizeof(g_sRGBE) - 1;
if (size < encodingLen)
{
return E_FAIL;
}
if (memcmp(info, g_sRGBE, encodingLen) != 0 && memcmp(info, g_sXYZE, encodingLen) != 0)
{
return HRESULT_E_NOT_SUPPORTED;
}
formatFound = true;
const size_t len = FindEOL(info, size);
if (len == size_t(-1)
|| len < 1)
{
return E_FAIL;
}
info += len + 1;
size -= len + 1;
}
else if ((size > exposureLen) && memcmp(info, g_Exposure, exposureLen) == 0)
{
info += exposureLen;
size -= exposureLen;
// Trim whitespace
while (*info == ' ' || *info == '\t')
{
if (--size == 0)
return E_FAIL;
++info;
}
const size_t len = FindEOL(info, size);
if (len == size_t(-1)
|| len < 1)
{
return E_FAIL;
}
char buff[32] = {};
strncpy_s(buff, info, std::min<size_t>(31, len));
auto newExposure = static_cast<float>(atof(buff));
if ((newExposure >= 1e-12f) && (newExposure <= 1e12f))
{
// Note that we ignore strange exposure values (like EXPOSURE=0)
exposure *= newExposure;
}
info += len + 1;
size -= len + 1;
}
else
{
const size_t len = FindEOL(info, size);
if (len == size_t(-1)
|| len < 1)
{
return E_FAIL;
}
info += len + 1;
size -= len + 1;
}
}
if (!formatFound)
{
return E_FAIL;
}
// Get orientation
char orientation[256] = {};
const size_t len = FindEOL(info, std::min<size_t>(sizeof(orientation), size - 1));
if (len == size_t(-1)
|| len <= 2)
{
return E_FAIL;
}
strncpy_s(orientation, info, len);
if (orientation[0] != '-' && orientation[1] != 'Y')
{
// We only support the -Y +X orientation (see top of file)
return (static_cast<unsigned long>(((orientation[0] == '+' || orientation[0] == '-') && (orientation[1] == 'X' || orientation[1] == 'Y'))))
? HRESULT_E_NOT_SUPPORTED : HRESULT_E_INVALID_DATA;
}
uint32_t height = 0;
if (sscanf_s(orientation + 2, "%u", &height) != 1)
{
return E_FAIL;
}
if (height > UINT16_MAX)
{
return HRESULT_E_NOT_SUPPORTED;
}
const char* ptr = orientation + 2;
while (*ptr != 0 && *ptr != '-' && *ptr != '+')
++ptr;
if (*ptr == 0)
{
return E_FAIL;
}
else if (*ptr != '+')
{
// We only support the -Y +X orientation (see top of file)
return HRESULT_E_NOT_SUPPORTED;
}
++ptr;
if (*ptr == 0 || (*ptr != 'X' && *ptr != 'Y'))
{
return E_FAIL;
}
else if (*ptr != 'X')
{
// We only support the -Y +X orientation (see top of file)
return HRESULT_E_NOT_SUPPORTED;
}
++ptr;
uint32_t width;
if (sscanf_s(ptr, "%u", &width) != 1)
{
return E_FAIL;
}
if (width > UINT16_MAX)
{
return HRESULT_E_NOT_SUPPORTED;
}
info += len + 1;
size -= len + 1;
if (!width || !height)
{
return HRESULT_E_INVALID_DATA;
}
uint64_t sizeBytes = uint64_t(width) * uint64_t(height) * sizeof(float) * 4;
if (sizeBytes > UINT32_MAX)
{
return HRESULT_E_ARITHMETIC_OVERFLOW;
}
if (size == 0)
{
return E_FAIL;
}
offset = size_t(info - static_cast<const char*>(pSource));
metadata.width = width;
metadata.height = height;
metadata.depth = metadata.arraySize = metadata.mipLevels = 1;
metadata.format = DXGI_FORMAT_R32G32B32A32_FLOAT;
metadata.dimension = TEX_DIMENSION_TEXTURE2D;
metadata.SetAlphaMode(TEX_ALPHA_MODE_OPAQUE);
return S_OK;
}
//-------------------------------------------------------------------------------------
// FloatToRGBE
//-------------------------------------------------------------------------------------
inline void FloatToRGBE(_Out_writes_(width*4) uint8_t* pDestination, _In_reads_(width*fpp) const float* pSource, size_t width, _In_range_(3, 4) int fpp) noexcept
{
auto ePtr = pSource + width * size_t(fpp);
for (size_t j = 0; j < width; ++j)
{
if (pSource + 2 >= ePtr) break;
const float r = pSource[0] >= 0.f ? pSource[0] : 0.f;
const float g = pSource[1] >= 0.f ? pSource[1] : 0.f;
const float b = pSource[2] >= 0.f ? pSource[2] : 0.f;
pSource += fpp;
const float max_xy = (r > g) ? r : g;
float max_xyz = (max_xy > b) ? max_xy : b;
if (max_xyz > 1e-32f)
{
int e;
max_xyz = frexpf(max_xyz, &e) * 256.f / max_xyz;
e += 128;
const uint8_t red = uint8_t(r * max_xyz);
const uint8_t green = uint8_t(g * max_xyz);
const uint8_t blue = uint8_t(b * max_xyz);
pDestination[0] = red;
pDestination[1] = green;
pDestination[2] = blue;
pDestination[3] = (red || green || blue) ? uint8_t(e & 0xff) : 0u;
}
else
{
pDestination[0] = pDestination[1] = pDestination[2] = pDestination[3] = 0;
}
pDestination += 4;
}
}
//-------------------------------------------------------------------------------------
// HalfToRGBE
//-------------------------------------------------------------------------------------
inline void HalfToRGBE(_Out_writes_(width * 4) uint8_t* pDestination, _In_reads_(width* fpp) const uint16_t* pSource, size_t width, _In_range_(3, 4) int fpp) noexcept
{
auto ePtr = pSource + width * size_t(fpp);
for (size_t j = 0; j < width; ++j)
{
if (pSource + 2 >= ePtr) break;
float r = PackedVector::XMConvertHalfToFloat(pSource[0]); r = (r >= 0.f) ? r : 0.f;
float g = PackedVector::XMConvertHalfToFloat(pSource[1]); g = (g >= 0.f) ? g : 0.f;
float b = PackedVector::XMConvertHalfToFloat(pSource[2]); b = (b >= 0.f) ? b : 0.f;
pSource += fpp;
const float max_xy = (r > g) ? r : g;
float max_xyz = (max_xy > b) ? max_xy : b;
if (max_xyz > 1e-32f)
{
int e;
max_xyz = frexpf(max_xyz, &e) * 256.f / max_xyz;
e += 128;
const uint8_t red = uint8_t(r * max_xyz);
const uint8_t green = uint8_t(g * max_xyz);
const uint8_t blue = uint8_t(b * max_xyz);
pDestination[0] = red;
pDestination[1] = green;
pDestination[2] = blue;
pDestination[3] = (red || green || blue) ? uint8_t(e & 0xff) : 0u;
}
else
{
pDestination[0] = pDestination[1] = pDestination[2] = pDestination[3] = 0;
}
pDestination += 4;
}
}
//-------------------------------------------------------------------------------------
// Encode using Adapative RLE
//-------------------------------------------------------------------------------------
_Success_(return > 0)
size_t EncodeRLE(_Out_writes_(width * 4) uint8_t* enc, _In_reads_(width * 4) const uint8_t* rgbe, size_t rowPitch, size_t width) noexcept
{
if (width < 8 || width > INT16_MAX)
{
// Don't try to compress too narrow or too wide scan-lines
return 0;
}
#ifdef WRITE_OLD_COLORS
size_t encSize = 0;
const uint8_t* scanPtr = rgbe;
for (size_t pixelCount = 0; pixelCount < width;)
{
size_t spanLen = 1;
auto spanPtr = reinterpret_cast<const uint32_t*>(scanPtr);
while (pixelCount + spanLen < width && spanLen < INT16_MAX)
{
if (spanPtr[spanLen] == *spanPtr)
{
++spanLen;
}
else
break;
}
if (spanLen > 2)
{
if (scanPtr[0] == 1 && scanPtr[1] == 1 && scanPtr[2] == 1)
{
return 0;
}
if (encSize + 8 > rowPitch)
return 0;
auto rleLen = static_cast<uint8_t>(std::min<size_t>(spanLen - 1, 255));
enc[0] = scanPtr[0];
enc[1] = scanPtr[1];
enc[2] = scanPtr[2];
enc[3] = scanPtr[3];
enc[4] = 1;
enc[5] = 1;
enc[6] = 1;
enc[7] = rleLen;
enc += 8;
encSize += 8;
size_t remaining = spanLen - 1 - rleLen;
if (remaining > 0)
{
rleLen = static_cast<uint8_t>(remaining >> 8);
if (rleLen > 0)
{
if (encSize + 4 > rowPitch)
return 0;
enc[0] = 1;
enc[1] = 1;
enc[2] = 1;
enc[3] = rleLen;
enc += 4;
encSize += 4;
remaining -= (rleLen << 8);
}
while (remaining > 0)
{
if (encSize + 4 > rowPitch)
return 0;
enc[0] = scanPtr[0];
enc[1] = scanPtr[1];
enc[2] = scanPtr[2];
enc[3] = scanPtr[3];
enc += 4;
encSize += 4;
--remaining;
}
}
scanPtr += spanLen * 4;
pixelCount += spanLen;
}
else if (scanPtr[0] == 1 && scanPtr[1] == 1 && scanPtr[2] == 1)
{
return 0;
}
else
{
if (encSize + 4 > rowPitch)
return 0;
enc[0] = scanPtr[0];
enc[1] = scanPtr[1];
enc[2] = scanPtr[2];
enc[3] = scanPtr[3];
enc += 4;
encSize += 4;
++pixelCount;
scanPtr += 4;
}
}
return encSize;
#else
enc[0] = 2;
enc[1] = 2;
enc[2] = uint8_t(width >> 8);
enc[3] = uint8_t(width & 0xff);
enc += 4;
size_t encSize = 4;
uint8_t scan[128] = {};
for (int channel = 0; channel < 4; ++channel)
{
const uint8_t* spanPtr = rgbe + channel;
for (size_t pixelCount = 0; pixelCount < width;)
{
uint8_t spanLen = 1;
while (pixelCount + spanLen < width && spanLen < 127)
{
if (spanPtr[spanLen * 4] == *spanPtr)
{
++spanLen;
}
else
break;
}
if (spanLen > 1)
{
if (encSize + 2 > rowPitch)
return 0;
enc[0] = 128u + spanLen;
enc[1] = *spanPtr;
enc += 2;
encSize += 2;
spanPtr += size_t(spanLen) * 4;
pixelCount += spanLen;
}
else
{
uint8_t runLen = 1;
scan[0] = *spanPtr;
while (pixelCount + runLen < width && runLen < 127)
{
if (spanPtr[(runLen - 1) * 4] != spanPtr[runLen * 4])
{
scan[runLen] = spanPtr[runLen * 4];
runLen++;
}
else
break;
}
if (encSize + runLen + 1 > rowPitch)
return 0;
*enc++ = runLen;
memcpy(enc, scan, runLen);
enc += runLen;
encSize += size_t(runLen) + 1;
spanPtr += size_t(runLen) * 4;
pixelCount += runLen;
}
}
}
return encSize;
#endif
}
}
//=====================================================================================
// Entry-points
//=====================================================================================
//-------------------------------------------------------------------------------------
// Obtain metadata from HDR file in memory/on disk
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::GetMetadataFromHDRMemory(const void* pSource, size_t size, TexMetadata& metadata) noexcept
{
if (!pSource || size == 0)
return E_INVALIDARG;
size_t offset;
float exposure;
return DecodeHDRHeader(pSource, size, metadata, offset, exposure);
}
_Use_decl_annotations_
HRESULT DirectX::GetMetadataFromHDRFile(const wchar_t* szFile, TexMetadata& metadata) noexcept
{
if (!szFile)
return E_INVALIDARG;
#ifdef _WIN32
#if (_WIN32_WINNT >= _WIN32_WINNT_WIN8)
ScopedHandle hFile(safe_handle(CreateFile2(szFile, GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING, nullptr)));
#else
ScopedHandle hFile(safe_handle(CreateFileW(szFile, GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING,
FILE_FLAG_SEQUENTIAL_SCAN, nullptr)));
#endif
if (!hFile)
{
return HRESULT_FROM_WIN32(GetLastError());
}
// Get the file size
FILE_STANDARD_INFO fileInfo;
if (!GetFileInformationByHandleEx(hFile.get(), FileStandardInfo, &fileInfo, sizeof(fileInfo)))
{
return HRESULT_FROM_WIN32(GetLastError());
}
// File is too big for 32-bit allocation, so reject read (4 GB should be plenty large enough for a valid HDR file)
if (fileInfo.EndOfFile.HighPart > 0)
{
return HRESULT_E_FILE_TOO_LARGE;
}
const size_t len = fileInfo.EndOfFile.LowPart;
#else // !WIN32
std::ifstream inFile(std::filesystem::path(szFile), std::ios::in | std::ios::binary | std::ios::ate);
if (!inFile)
return E_FAIL;
std::streampos fileLen = inFile.tellg();
if (!inFile)
return E_FAIL;
if (fileLen > UINT32_MAX)
return HRESULT_E_FILE_TOO_LARGE;
inFile.seekg(0, std::ios::beg);
if (!inFile)
return E_FAIL;
const size_t len = fileLen;
#endif
// Need at least enough data to fill the standard header to be a valid HDR
if (len < sizeof(g_Signature))
{
return E_FAIL;
}
// Read the first part of the file to find the header
uint8_t header[8192] = {};
#ifdef _WIN32
DWORD bytesRead = 0;
if (!ReadFile(hFile.get(), header, std::min<DWORD>(sizeof(header), fileInfo.EndOfFile.LowPart), &bytesRead, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
auto const headerLen = static_cast<size_t>(bytesRead);
#else
auto const headerLen = std::min<size_t>(sizeof(header), len);
inFile.read(reinterpret_cast<char*>(header), headerLen);
if (!inFile)
return E_FAIL;
#endif
size_t offset;
float exposure;
return DecodeHDRHeader(header, headerLen, metadata, offset, exposure);
}
//-------------------------------------------------------------------------------------
// Load a HDR file in memory
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::LoadFromHDRMemory(const void* pSource, size_t size, TexMetadata* metadata, ScratchImage& image) noexcept
{
if (!pSource || size == 0)
return E_INVALIDARG;
image.Release();
size_t offset;
float exposure;
TexMetadata mdata;
HRESULT hr = DecodeHDRHeader(pSource, size, mdata, offset, exposure);
if (FAILED(hr))
return hr;
if (offset > size)
return E_FAIL;
const size_t remaining = size - offset;
if (remaining == 0)
return E_FAIL;
hr = image.Initialize2D(mdata.format, mdata.width, mdata.height, 1, 1, CP_FLAGS_LIMIT_4GB);
if (FAILED(hr))
return hr;
// Copy pixels
auto sourcePtr = static_cast<const uint8_t*>(pSource) + offset;
size_t pixelLen = remaining;
const Image* img = image.GetImage(0, 0, 0);
if (!img)
{
image.Release();
return E_POINTER;
}
auto destPtr = img->pixels;
#ifdef _DEBUG
memset(img->pixels, 0xFF, img->rowPitch * img->height);
#endif
for (size_t scan = 0; scan < mdata.height; ++scan)
{
if (pixelLen < 4)
{
image.Release();
return E_FAIL;
}
uint8_t inColor[4];
memcpy(inColor, sourcePtr, 4);
sourcePtr += 4;
pixelLen -= 4;
auto scanLine = reinterpret_cast<float*>(destPtr);
if (inColor[0] == 2 && inColor[1] == 2 && inColor[2] < 128)
{
// Adaptive Run Length Encoding (RLE)
if (size_t((size_t(inColor[2]) << 8) + inColor[3]) != mdata.width)
{
image.Release();
return E_FAIL;
}
for (int channel = 0; channel < 4; ++channel)
{
auto pixelLoc = scanLine + channel;
for (size_t pixelCount = 0; pixelCount < mdata.width;)
{
if (pixelLen < 2)
{
image.Release();
return E_FAIL;
}
assert(sourcePtr < (reinterpret_cast<const uint8_t*>(pSource) + size));
uint8_t runLen = *sourcePtr;
if (runLen > 128)
{
runLen &= 127;
if (pixelCount + runLen > mdata.width)
{
image.Release();
return E_FAIL;
}
auto val = static_cast<float>(sourcePtr[1]);
for (uint8_t j = 0; j < runLen; ++j)
{
*pixelLoc = val;
pixelLoc += 4;
}
pixelCount += runLen;
sourcePtr += 2;
pixelLen -= 2;
}
else if ((size < size_t(runLen) + 1) || ((pixelCount + size_t(runLen)) > mdata.width))
{
image.Release();
return E_FAIL;
}
else
{
++sourcePtr;
for (uint8_t j = 0; j < runLen; ++j)
{
auto val = static_cast<float>(*sourcePtr++);
*pixelLoc = val;
pixelLoc += 4;
}
pixelCount += runLen;
pixelLen -= size_t(runLen) + 1;
}
}
}
}
else
{
auto pixelLoc = scanLine;
float prevColor[4];
prevColor[0] = inColor[0];
prevColor[1] = inColor[1];
prevColor[2] = inColor[2];
prevColor[3] = inColor[3];
int bitShift = 0;
for (size_t pixelCount = 0; pixelCount < mdata.width;)
{
if (inColor[0] == 1 && inColor[1] == 1 && inColor[2] == 1)
{
if (bitShift > 24)
{
image.Release();
return E_FAIL;
}
// "Standard" Run Length Encoding
const size_t spanLen = size_t(inColor[3]) << bitShift;
if (spanLen + pixelCount > mdata.width)
{
image.Release();
return E_FAIL;
}
for (size_t j = 0; j < spanLen; ++j)
{
pixelLoc[0] = prevColor[0];
pixelLoc[1] = prevColor[1];
pixelLoc[2] = prevColor[2];
pixelLoc[3] = prevColor[3];
pixelLoc += 4;
}
pixelCount += spanLen;
bitShift += 8;
}
else
{
// Uncompressed
pixelLoc[0] = prevColor[0] = inColor[0];
pixelLoc[1] = prevColor[1] = inColor[1];
pixelLoc[2] = prevColor[2] = inColor[2];
pixelLoc[3] = prevColor[3] = inColor[3];
bitShift = 0;
++pixelCount;
pixelLoc += 4;
}
if (pixelCount >= mdata.width)
break;
if (pixelLen < 4)
{
image.Release();
return E_FAIL;
}
memcpy(inColor, sourcePtr, 4);
sourcePtr += 4;
pixelLen -= 4;
}
}
destPtr += img->rowPitch;
}
// Transform values
{
auto fdata = reinterpret_cast<float*>(image.GetPixels());
for (size_t j = 0; j < image.GetPixelsSize(); j += 16)
{
auto const exponent = static_cast<int>(fdata[3]);
fdata[0] = 1.0f / exposure*ldexpf((fdata[0] + 0.5f), exponent - (128 + 8));
fdata[1] = 1.0f / exposure*ldexpf((fdata[1] + 0.5f), exponent - (128 + 8));
fdata[2] = 1.0f / exposure*ldexpf((fdata[2] + 0.5f), exponent - (128 + 8));
fdata[3] = 1.f;
fdata += 4;
}
}
if (metadata)
memcpy(metadata, &mdata, sizeof(TexMetadata));
return S_OK;
}
//-------------------------------------------------------------------------------------
// Load a HDR file from disk
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::LoadFromHDRFile(const wchar_t* szFile, TexMetadata* metadata, ScratchImage& image) noexcept
{
if (!szFile)
return E_INVALIDARG;
image.Release();
#ifdef _WIN32
#if (_WIN32_WINNT >= _WIN32_WINNT_WIN8)
ScopedHandle hFile(safe_handle(CreateFile2(szFile, GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING, nullptr)));
#else
ScopedHandle hFile(safe_handle(CreateFileW(szFile, GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING,
FILE_FLAG_SEQUENTIAL_SCAN, nullptr)));
#endif
if (!hFile)
{
return HRESULT_FROM_WIN32(GetLastError());
}
// Get the file size
FILE_STANDARD_INFO fileInfo;
if (!GetFileInformationByHandleEx(hFile.get(), FileStandardInfo, &fileInfo, sizeof(fileInfo)))
{
return HRESULT_FROM_WIN32(GetLastError());
}
// File is too big for 32-bit allocation, so reject read (4 GB should be plenty large enough for a valid HDR file)
if (fileInfo.EndOfFile.HighPart > 0)
{
return HRESULT_E_FILE_TOO_LARGE;
}
const size_t len = fileInfo.EndOfFile.LowPart;
#else // !WIN32
std::ifstream inFile(std::filesystem::path(szFile), std::ios::in | std::ios::binary | std::ios::ate);
if (!inFile)
return E_FAIL;
std::streampos fileLen = inFile.tellg();
if (!inFile)
return E_FAIL;
if (fileLen > UINT32_MAX)
return HRESULT_E_FILE_TOO_LARGE;
inFile.seekg(0, std::ios::beg);
if (!inFile)
return E_FAIL;
const size_t len = fileLen;
#endif
// Need at least enough data to fill the header to be a valid HDR
if (len < sizeof(g_Signature))
{
return E_FAIL;
}
// Read file
std::unique_ptr<uint8_t[]> temp(new (std::nothrow) uint8_t[len]);
if (!temp)
{
return E_OUTOFMEMORY;
}
#ifdef _WIN32
DWORD bytesRead = 0;
if (!ReadFile(hFile.get(), temp.get(), fileInfo.EndOfFile.LowPart, &bytesRead, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesRead != fileInfo.EndOfFile.LowPart)
{
return E_FAIL;
}
#else
inFile.read(reinterpret_cast<char*>(temp.get()), len);
if (!inFile)
return E_FAIL;
#endif
return LoadFromHDRMemory(temp.get(), len, metadata, image);
}
//-------------------------------------------------------------------------------------
// Save a HDR file to memory
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::SaveToHDRMemory(const Image& image, Blob& blob) noexcept
{
if (!image.pixels)
return E_POINTER;
if (image.width > INT16_MAX || image.height > INT16_MAX)
{
// Images larger than this can't be RLE encoded. They are technically allowed as
// uncompresssed, but we just don't support them.
return HRESULT_E_NOT_SUPPORTED;
}
int fpp;
switch (image.format)
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
case DXGI_FORMAT_R16G16B16A16_FLOAT:
fpp = 4;
break;
case DXGI_FORMAT_R32G32B32_FLOAT:
fpp = 3;
break;
default:
return HRESULT_E_NOT_SUPPORTED;
}
blob.Release();
char header[256] = {};
sprintf_s(header, g_Header, image.height, image.width);
auto headerLen = static_cast<DWORD>(strlen(header));
size_t rowPitch = image.width * 4;
const size_t slicePitch = image.height * rowPitch;
HRESULT hr = blob.Initialize(headerLen + slicePitch);
if (FAILED(hr))
return hr;
// Copy header
auto dPtr = static_cast<uint8_t*>(blob.GetBufferPointer());
assert(dPtr != nullptr);
memcpy(dPtr, header, headerLen);
dPtr += headerLen;
#ifdef DISABLE_COMPRESS
// Uncompressed write
auto sPtr = reinterpret_cast<const uint8_t*>(image.pixels);
for (size_t scan = 0; scan < image.height; ++scan)
{
FloatToRGBE(dPtr, reinterpret_cast<const float*>(sPtr), image.width, fpp);
dPtr += rowPitch;
sPtr += image.rowPitch;
}
#else
std::unique_ptr<uint8_t[]> temp(new (std::nothrow) uint8_t[rowPitch * 2]);
if (!temp)
{
blob.Release();
return E_OUTOFMEMORY;
}
auto rgbe = temp.get();
auto enc = temp.get() + rowPitch;
const uint8_t* sPtr = image.pixels;
for (size_t scan = 0; scan < image.height; ++scan)
{
if (image.format == DXGI_FORMAT_R32G32B32A32_FLOAT || image.format == DXGI_FORMAT_R32G32B32_FLOAT)
{
FloatToRGBE(rgbe, reinterpret_cast<const float*>(sPtr), image.width, fpp);
}
else if (image.format == DXGI_FORMAT_R16G16B16A16_FLOAT)
{
HalfToRGBE(rgbe, reinterpret_cast<const uint16_t*>(sPtr), image.width, fpp);
}
sPtr += image.rowPitch;
size_t encSize = EncodeRLE(enc, rgbe, rowPitch, image.width);
if (encSize > 0)
{
memcpy(dPtr, enc, encSize);
dPtr += encSize;
}
else
{
memcpy(dPtr, rgbe, rowPitch);
dPtr += rowPitch;
}
}
#endif
hr = blob.Trim(size_t(dPtr - static_cast<uint8_t*>(blob.GetBufferPointer())));
if (FAILED(hr))
{
blob.Release();
return hr;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Save a HDR file to disk
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::SaveToHDRFile(const Image& image, const wchar_t* szFile) noexcept
{
if (!szFile)
return E_INVALIDARG;
if (!image.pixels)
return E_POINTER;
if (image.width > INT16_MAX || image.height > INT16_MAX)
{
// Images larger than this can't be RLE encoded. They are technically allowed as
// uncompresssed, but we just don't support them.
return HRESULT_E_NOT_SUPPORTED;
}
int fpp;
switch (image.format)
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
case DXGI_FORMAT_R16G16B16A16_FLOAT:
fpp = 4;
break;
case DXGI_FORMAT_R32G32B32_FLOAT:
fpp = 3;
break;
default:
return HRESULT_E_NOT_SUPPORTED;
}
// Create file and write header
#ifdef _WIN32
#if (_WIN32_WINNT >= _WIN32_WINNT_WIN8)
ScopedHandle hFile(safe_handle(CreateFile2(szFile,
GENERIC_WRITE, 0, CREATE_ALWAYS, nullptr)));
#else
ScopedHandle hFile(safe_handle(CreateFileW(szFile,
GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr)));
#endif
if (!hFile)
{
return HRESULT_FROM_WIN32(GetLastError());
}
auto_delete_file delonfail(hFile.get());
#else // !WIN32
std::ofstream outFile(std::filesystem::path(szFile), std::ios::out | std::ios::binary | std::ios::trunc);
if (!outFile)
return E_FAIL;
#endif
const uint64_t pitch = uint64_t(image.width) * 4u;
const uint64_t slicePitch = uint64_t(image.height) * pitch;
if (pitch > UINT32_MAX)
return HRESULT_E_ARITHMETIC_OVERFLOW;
size_t rowPitch = static_cast<size_t>(pitch);
if (slicePitch < 65535)
{
// For small images, it is better to create an in-memory file and write it out
Blob blob;
HRESULT hr = SaveToHDRMemory(image, blob);
if (FAILED(hr))
return hr;
// Write blob
#ifdef _WIN32
auto const bytesToWrite = static_cast<const DWORD>(blob.GetBufferSize());
DWORD bytesWritten;
if (!WriteFile(hFile.get(), blob.GetBufferPointer(), bytesToWrite, &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != bytesToWrite)
{
return E_FAIL;
}
#else
outFile.write(reinterpret_cast<char*>(blob.GetBufferPointer()),
static_cast<std::streamsize>(blob.GetBufferSize()));
if (!outFile)
return E_FAIL;
#endif
}
else
{
// Otherwise, write the image one scanline at a time...
std::unique_ptr<uint8_t[]> temp(new (std::nothrow) uint8_t[rowPitch * 2]);
if (!temp)
return E_OUTOFMEMORY;
auto rgbe = temp.get();
// Write header
char header[256] = {};
sprintf_s(header, g_Header, image.height, image.width);
#ifdef _WIN32
auto const headerLen = static_cast<DWORD>(strlen(header));
DWORD bytesWritten;
if (!WriteFile(hFile.get(), header, headerLen, &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != headerLen)
return E_FAIL;
#else
outFile.write(reinterpret_cast<char*>(header), static_cast<std::streamsize>(strlen(header)));
if (!outFile)
return E_FAIL;
#endif
#ifdef DISABLE_COMPRESS
// Uncompressed write
auto sPtr = reinterpret_cast<const uint8_t*>(image.pixels);
for (size_t scan = 0; scan < image.height; ++scan)
{
FloatToRGBE(rgbe, reinterpret_cast<const float*>(sPtr), image.width, fpp);
sPtr += image.rowPitch;
#ifdef _WIN32
if (!WriteFile(hFile.get(), rgbe, static_cast<DWORD>(rowPitch), &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != rowPitch)
return E_FAIL;
#else
outFile.write(reinterpret_cast<char*>(rgbe), static_cast<std::streamsize>(rowPitch));
if (!outFile)
return E_FAIL;
#endif
}
#else
auto enc = temp.get() + rowPitch;
const uint8_t* sPtr = image.pixels;
for (size_t scan = 0; scan < image.height; ++scan)
{
if (image.format == DXGI_FORMAT_R32G32B32A32_FLOAT || image.format == DXGI_FORMAT_R32G32B32_FLOAT)
{
FloatToRGBE(rgbe, reinterpret_cast<const float*>(sPtr), image.width, fpp);
}
else if (image.format == DXGI_FORMAT_R16G16B16A16_FLOAT)
{
HalfToRGBE(rgbe, reinterpret_cast<const uint16_t*>(sPtr), image.width, fpp);
}
sPtr += image.rowPitch;
const size_t encSize = EncodeRLE(enc, rgbe, rowPitch, image.width);
if (encSize > 0)
{
if (encSize > UINT32_MAX)
return HRESULT_E_ARITHMETIC_OVERFLOW;
#ifdef _WIN32
if (!WriteFile(hFile.get(), enc, static_cast<DWORD>(encSize), &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != encSize)
return E_FAIL;
#else
outFile.write(reinterpret_cast<char*>(enc), static_cast<std::streamsize>(encSize));
if (!outFile)
return E_FAIL;
#endif
}
else
{
#ifdef _WIN32
if (!WriteFile(hFile.get(), rgbe, static_cast<DWORD>(rowPitch), &bytesWritten, nullptr))
{
return HRESULT_FROM_WIN32(GetLastError());
}
if (bytesWritten != rowPitch)
return E_FAIL;
#else
outFile.write(reinterpret_cast<char*>(rgbe), static_cast<std::streamsize>(rowPitch));
if (!outFile)
return E_FAIL;
#endif
}
}
#endif
}
#ifdef _WIN32
delonfail.clear();
#endif
return S_OK;
}
//--------------------------------------------------------------------------------------
// Adapters for /Zc:wchar_t- clients
#if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
namespace DirectX
{
HRESULT __cdecl GetMetadataFromHDRFile(
_In_z_ const __wchar_t* szFile,
_Out_ TexMetadata& metadata) noexcept
{
return GetMetadataFromHDRFile(reinterpret_cast<const unsigned short*>(szFile), metadata);
}
HRESULT __cdecl LoadFromHDRFile(
_In_z_ const __wchar_t* szFile,
_Out_opt_ TexMetadata* metadata,
_Out_ ScratchImage& image) noexcept
{
return LoadFromHDRFile(reinterpret_cast<const unsigned short*>(szFile), metadata, image);
}
HRESULT __cdecl SaveToHDRFile(
_In_ const Image& image,
_In_z_ const __wchar_t* szFile) noexcept
{
return SaveToHDRFile(image, reinterpret_cast<const unsigned short*>(szFile));
}
}
#endif // !_NATIVE_WCHAR_T_DEFINED