Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization
Перейти к файлу
xinyangj 4183041aa7
Merge pull request #2 from Dianezzy/main
modify readme
2022-01-04 13:04:51 +08:00
.github/workflows Create codeql-analysis.yml 2021-12-08 16:24:51 +08:00
Datasets add readme 2021-12-30 11:19:56 +08:00
cad_recognition add readme 2021-12-30 11:19:56 +08:00
data add readme 2021-12-30 11:19:56 +08:00
gcn_lib first commit upload code from private repo 2021-12-02 23:39:30 -08:00
misc first commit upload code from private repo 2021-12-02 23:39:30 -08:00
utils add readme 2021-12-30 15:22:35 +08:00
.gitignore add readme 2021-12-30 11:19:56 +08:00
CODE_OF_CONDUCT.md CODE_OF_CONDUCT.md committed 2021-12-02 23:36:45 -08:00
LICENSE LICENSE committed 2021-12-02 23:36:46 -08:00
NOTICE notice and copyright header 2021-12-09 18:50:00 -08:00
README.md fix typo 2022-01-02 13:36:54 +08:00
SECURITY.md SECURITY.md committed 2021-12-02 23:36:47 -08:00
SUPPORT.md SUPPORT.md committed 2021-12-02 23:36:48 -08:00
deepgcn_env_install.sh add readme 2021-12-30 11:19:56 +08:00

README.md

YOLaT-VectorGraphicsRecognition

arXiv

This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without Rasterization.

Environments

conda create -n your_env_name python=3.8
conda activate your_env_name
sh deepgcn_env_install.sh 

YOLaT

1. Data Preparation

Floorplans

a) Download and unzip the Floorplans dataset to the dataset folder: data/FloorPlansGraph5_iter

b) Run the following scripts to prepare the dataset for training/inference.

python utils/svg_utils/build_graph_bbox.py

Diagrams

a) Download and unzip the Diagrams dataset to the dataset folder: data/diagrams

b) Run the following scripts to prepare the dataset for training/inference.

python utils/svg_utils/build_graph_bbox_diagram.py

2. Training & Inference

Floorplans

cd cad_recognition
CUDA_VISIBLE_DEVICES=0 python -u train.py --batch_size 4 --data_dir data/FloorPlansGraph5_iter --phase train --lr 2.5e-4 --lr_adjust_freq 9999999999999999999999999999999999999 --in_channels 5 --n_blocks 2 --n_blocks_out 2 --arch centernet3cc_rpn_gp_iter2  --graph bezier_cc_bb_iter --data_aug true  --weight_decay 1e-5 --postname run182_2 --dropout 0.0 --do_mixup 0 --bbox_sampling_step 10

Diagrams

cd cad_recognition
CUDA_VISIBLE_DEVICES=0 python -u train.py --batch_size 4 --data_dir data/diagrams --phase train --lr 2.5e-4 --lr_adjust_freq 9999999999999999999999999999999999999 --in_channels 5 --n_blocks 2 --n_blocks_out 2 --arch centernet3cc_rpn_gp_iter2  --graph bezier_cc_bb_iter --data_aug true  --weight_decay 1e-5 --postname run182_2 --dropout 0.0 --do_mixup 0 --bbox_sampling_step 5

Citation

  @inproceedings{jiang2021recognizing,
  title={{Recognizing Vector Graphics without Rasterization}},
  author={Jiang, Xinyang and Liu, Lu and Shan, Caihua and Shen, Yifei and Dong, Xuanyi and Li, Dongsheng},
  booktitle={Proceedings of Advances in Neural Information Processing Systems (NIPS)},
  volume={34},
  number={},
  pages={},
  year={2021}}