Added caption of framework and Github url for presentation.
This commit is contained in:
Родитель
b78c57079b
Коммит
4c96b6c176
Двоичный файл не отображается.
До Ширина: | Высота: | Размер: 11 KiB После Ширина: | Высота: | Размер: 12 KiB |
Двоичный файл не отображается.
До Ширина: | Высота: | Размер: 24 KiB После Ширина: | Высота: | Размер: 24 KiB |
|
@ -206,6 +206,8 @@ Data collection, exploration, and preparation (Cont'd)
|
|||
========================================================
|
||||
|
||||
<center>![](./demo-figure/framework.png)</center>
|
||||
|
||||
**To predict employee attrition in the next M + 1 months, by analyzing employee data of last N months.**
|
||||
|
||||
Feature Extraction
|
||||
========================================================
|
||||
|
@ -225,6 +227,7 @@ Feature Extraction
|
|||
Model creation and validation
|
||||
========================================================
|
||||
|
||||
- Supervised classification problem.
|
||||
- Algorithm selection
|
||||
- Logistic regression, Support vector machine, Decision tree, etc.
|
||||
- Ensemble
|
||||
|
@ -713,7 +716,7 @@ Takeaways
|
|||
- Feature engineering takes majority of time.
|
||||
- Model creation and validation.
|
||||
- Sentiment analysis on text data.
|
||||
- All resources available on Github!
|
||||
- All resources available on Github! https://github.com/Microsoft/acceleratoRs/tree/master/EmployeeAttritionPrediction/Docs/FOSSAsiaMeetup
|
||||
|
||||
References
|
||||
========================================================
|
||||
|
|
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
|
@ -87,6 +87,8 @@ Data collection, exploration, and preparation (Cont'd)
|
|||
========================================================
|
||||
|
||||
<center>![](./demo-figure/framework.png)</center>
|
||||
|
||||
**To predict employee attrition in the next M + 1 months, by analyzing employee data of last N months.**
|
||||
|
||||
Feature Extraction
|
||||
========================================================
|
||||
|
@ -106,6 +108,7 @@ Feature Extraction
|
|||
Model creation and validation
|
||||
========================================================
|
||||
|
||||
- Supervised classification problem.
|
||||
- Algorithm selection
|
||||
- Logistic regression, Support vector machine, Decision tree, etc.
|
||||
- Ensemble
|
||||
|
@ -534,10 +537,10 @@ Step 5 Model evaluating (Cont'd)
|
|||
|
||||
```
|
||||
Models Accuracy Recall Precision Elapsed
|
||||
1 SVM RBF 0.85 0.79 0.52 27.69
|
||||
2 Random Forest 0.92 0.83 0.70 220.19
|
||||
3 Xgboost 0.90 0.79 0.67 290.05
|
||||
4 Stacking 0.90 0.83 0.63 84.36
|
||||
1 SVM RBF 0.86 0.76 0.55 27.69
|
||||
2 Random Forest 0.92 0.80 0.71 220.19
|
||||
3 Xgboost 0.92 0.82 0.73 290.05
|
||||
4 Stacking 0.92 0.85 0.71 84.36
|
||||
```
|
||||
|
||||
- Analysis
|
||||
|
@ -699,25 +702,25 @@ Confusion Matrix and Statistics
|
|||
|
||||
Reference
|
||||
Prediction No Yes
|
||||
No 84 16
|
||||
Yes 6 44
|
||||
No 87 13
|
||||
Yes 3 47
|
||||
|
||||
Accuracy : 0.8533
|
||||
95% CI : (0.7864, 0.9057)
|
||||
Accuracy : 0.8933
|
||||
95% CI : (0.8326, 0.9378)
|
||||
No Information Rate : 0.6
|
||||
P-Value [Acc > NIR] : 1.243e-11
|
||||
P-Value [Acc > NIR] : 1.336e-15
|
||||
|
||||
Kappa : 0.6857
|
||||
Mcnemar's Test P-Value : 0.05501
|
||||
Kappa : 0.7714
|
||||
Mcnemar's Test P-Value : 0.02445
|
||||
|
||||
Sensitivity : 0.7333
|
||||
Specificity : 0.9333
|
||||
Pos Pred Value : 0.8800
|
||||
Neg Pred Value : 0.8400
|
||||
Sensitivity : 0.7833
|
||||
Specificity : 0.9667
|
||||
Pos Pred Value : 0.9400
|
||||
Neg Pred Value : 0.8700
|
||||
Prevalence : 0.4000
|
||||
Detection Rate : 0.2933
|
||||
Detection Rate : 0.3133
|
||||
Detection Prevalence : 0.3333
|
||||
Balanced Accuracy : 0.8333
|
||||
Balanced Accuracy : 0.8750
|
||||
|
||||
'Positive' Class : Yes
|
||||
|
||||
|
@ -729,7 +732,7 @@ Takeaways
|
|||
- Feature engineering takes majority of time.
|
||||
- Model creation and validation.
|
||||
- Sentiment analysis on text data.
|
||||
- All resources available on Github!
|
||||
- All resources available on Github! https://github.com/Microsoft/acceleratoRs/tree/master/EmployeeAttritionPrediction/Docs/FOSSAsiaMeetup
|
||||
|
||||
References
|
||||
========================================================
|
||||
|
|
Загрузка…
Ссылка в новой задаче