Added caption of framework and Github url for presentation.

This commit is contained in:
yueguoguo 2017-03-09 18:10:19 +08:00
Родитель b78c57079b
Коммит 4c96b6c176
5 изменённых файлов: 51 добавлений и 43 удалений

Двоичный файл не отображается.

До

Ширина:  |  Высота:  |  Размер: 11 KiB

После

Ширина:  |  Высота:  |  Размер: 12 KiB

Двоичный файл не отображается.

До

Ширина:  |  Высота:  |  Размер: 24 KiB

После

Ширина:  |  Высота:  |  Размер: 24 KiB

Просмотреть файл

@ -206,6 +206,8 @@ Data collection, exploration, and preparation (Cont'd)
========================================================
<center>![](./demo-figure/framework.png)</center>
**To predict employee attrition in the next M + 1 months, by analyzing employee data of last N months.**
Feature Extraction
========================================================
@ -225,6 +227,7 @@ Feature Extraction
Model creation and validation
========================================================
- Supervised classification problem.
- Algorithm selection
- Logistic regression, Support vector machine, Decision tree, etc.
- Ensemble
@ -713,7 +716,7 @@ Takeaways
- Feature engineering takes majority of time.
- Model creation and validation.
- Sentiment analysis on text data.
- All resources available on Github!
- All resources available on Github! https://github.com/Microsoft/acceleratoRs/tree/master/EmployeeAttritionPrediction/Docs/FOSSAsiaMeetup
References
========================================================

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Просмотреть файл

@ -87,6 +87,8 @@ Data collection, exploration, and preparation (Cont'd)
========================================================
<center>![](./demo-figure/framework.png)</center>
**To predict employee attrition in the next M + 1 months, by analyzing employee data of last N months.**
Feature Extraction
========================================================
@ -106,6 +108,7 @@ Feature Extraction
Model creation and validation
========================================================
- Supervised classification problem.
- Algorithm selection
- Logistic regression, Support vector machine, Decision tree, etc.
- Ensemble
@ -534,10 +537,10 @@ Step 5 Model evaluating (Cont'd)
```
Models Accuracy Recall Precision Elapsed
1 SVM RBF 0.85 0.79 0.52 27.69
2 Random Forest 0.92 0.83 0.70 220.19
3 Xgboost 0.90 0.79 0.67 290.05
4 Stacking 0.90 0.83 0.63 84.36
1 SVM RBF 0.86 0.76 0.55 27.69
2 Random Forest 0.92 0.80 0.71 220.19
3 Xgboost 0.92 0.82 0.73 290.05
4 Stacking 0.92 0.85 0.71 84.36
```
- Analysis
@ -699,25 +702,25 @@ Confusion Matrix and Statistics
Reference
Prediction No Yes
No 84 16
Yes 6 44
No 87 13
Yes 3 47
Accuracy : 0.8533
95% CI : (0.7864, 0.9057)
Accuracy : 0.8933
95% CI : (0.8326, 0.9378)
No Information Rate : 0.6
P-Value [Acc > NIR] : 1.243e-11
P-Value [Acc > NIR] : 1.336e-15
Kappa : 0.6857
Mcnemar's Test P-Value : 0.05501
Kappa : 0.7714
Mcnemar's Test P-Value : 0.02445
Sensitivity : 0.7333
Specificity : 0.9333
Pos Pred Value : 0.8800
Neg Pred Value : 0.8400
Sensitivity : 0.7833
Specificity : 0.9667
Pos Pred Value : 0.9400
Neg Pred Value : 0.8700
Prevalence : 0.4000
Detection Rate : 0.2933
Detection Rate : 0.3133
Detection Prevalence : 0.3333
Balanced Accuracy : 0.8333
Balanced Accuracy : 0.8750
'Positive' Class : Yes
@ -729,7 +732,7 @@ Takeaways
- Feature engineering takes majority of time.
- Model creation and validation.
- Sentiment analysis on text data.
- All resources available on Github!
- All resources available on Github! https://github.com/Microsoft/acceleratoRs/tree/master/EmployeeAttritionPrediction/Docs/FOSSAsiaMeetup
References
========================================================