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Abstract
Network functions like firewalls, proxies, and NATs are in-
stances of distributed systems that lie on the critical path for
a substantial fraction of today’s cloud applications. Unfortu-
nately, validating these systems remains difficult due to their
complex stateful, timed, and distributed behaviors.

In this paper, we present the design and implementation of
Horde, a runtime verification system for distributed network
functions that achieves high expressiveness, fidelity, and scal-
ability. Given a property of interest, Horde efficiently checks
running systems for violations of the property with a scale-out
architecture consisting of a collection of global verifiers and
local monitors. To improve performance and reduce commu-
nication overhead, Horde includes an array of optimizations
that leverage properties of networked systems to suppress
provably unnecessary system events and to shard verification
over every available local and global component. We evalu-
ate Horde over several network functions including a NAT
Gateway that powers a large cloud provider, identifying both
design and implementation bugs in the process.

1 Introduction
An emerging bottleneck to correctness and availability in
modern cloud systems are the various network functions (e.g.,
firewalls, NATs, and load balancers) that interpose on the ma-
jority of application requests flowing to, from, and between
servers in the cloud. Over time, these network functions have
become increasingly complex. Today, many of these func-
tions are full-fledged distributed systems whose correctness
depends on the coordination of multiple devices as well as on
stored state and system timing.

Configuration errors and software bugs in these compo-
nents can have an outsized impact on SLAs [1, 2] not only
because of the complexity of these systems, but also because
they are on the critical path of most application requests. For
instance, a production NAT gateway we verify in this work
manages (replicated) states for millions of flows and errors
in it can lead to black holes, broken connectivity, forwarding
loops, and more. Internal incident logs over the course of
just a few weeks (late October to early November of 2019)
show errors like these causing at least four outages, and public
incident reports from providers show similar effects [1, 3, 4].

To improve availability, recent proposals suggest using
static verification to prove the correctness of these sys-
tems [5–8]. A key challenge for static verification techniques
is the problem of state explosion: checking the validity of

the system for every possible input (i.e., packets) and order-
ing of events is prohibitively expensive. Broadly speaking,
these proposals respond in one of a few ways. The first is to
require the use of special programming languages or other
types of programmer interaction [8, 9]. The second is to use
model checking techniques to more efficiently explore all
possible system behaviors. Finally, many systems—to reduce
the state space they must verify and to make verification more
tractable—limit the set of verifiable behaviors, e.g., to those
that are compact [5], unordered [6], or abstract [10].

All of these approaches come with significant drawbacks.
With the first, programmers are saddled with a substantial
burden that can overwhelm the development of the system.
With the second, model checking still typically relies on hand-
written models of functionality, which may be difficult to
provide for a rapidly evolving or complex system. Finally,
limiting the scope of verification fails to extend to the increas-
ingly complex services found in modern networks—services
that arguably need verification the most.

Runtime verification is an alternative approach that
sidesteps many of the above limitations. In runtime verifi-
cation, a tool extracts information about the current state of
a running system—testbed, canary, or production—to verify
that invariants hold throughout execution [11–15]. Compared
to static verification, runtime verification tests control flow,
workloads, and implementations actually used in practice
and does not require hand-written models. It is often used in
conjunction with other testing and verification tools as a back-
stop for finding bugs. The challenge, particularly in network
functions, is the need, at runtime, to: (1) reason about the
coordination between events issued at different locations, (2)
efficiently aggregate global state after each individual event,
and (3) scale sub-linearly with the size of the original system—
a verifier that requires the same amount of resources as the
system itself is untenable for most production environments.

In this paper, we present the design of a scale-out, runtime
verification tool for network functions called Horde that over-
comes the above challenges. Horde provides a simple, but
expressive language for specifying invariants with a focus on
supporting network functions. Examples of network-focused
language features included in Horde, but uncommon in other
runtime verification systems are support for properties that are
parametric over the “location” of events, properties that refer-
ence stateful variables, the ability to execute partial matches
over packet fields, and support for temporal predicates.

Horde translates these invariants to a set of symbolic au-
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tomata that can efficiently verify the current global state of the
system. In addition, to ensure that the system can scale out to
a near-unlimited number of machines, Horde implements the
core of these checks on top of production stream processing
systems [16,17]. To efficiently coordinate between distributed
verifiers, Horde relies on hardware-supported time synchro-
nization protocols like PTP. Finally, to minimize the overhead
of the verification system, Horde leverages observations that
network events/invariants are typically:

Flow- or connection-based: For most network functions, cor-
rectness is defined on a per-flow or per-connection basis. From
the invariants, Horde derives sharding keys that allow it to
distribute the verification task across independent workers.
These shards also expose boundaries on which we can grace-
fully scale down the system to a sampled subset of the input.

Partially suppressible: Rather than aggregate all events in the
system to a logically centralized verifier, most network events
have limited windows of relevance depending on the state
of the system, e.g., only if the connection has recently been
closed. Horde includes an optimization scheme to suppress
such messages before they ever leave the NF instance.

We note that Horde does not guarantee perfect accuracy under
asynchrony—to do so would require atomicity guarantees
in the critical path of the network functions. Horde instead
chooses to handle these situations speculatively and notify
users after-the-fact about transient inconsistency (Section 7.3).
Despite this, Horde identified at least four bugs in an early
(limited) deployment of a real distributed network function: a
NAT gateway (NATGW) of a large public cloud.

To summarize, our work makes the following contributions:

• We present a case study of the needs of a large modern
network function from our production cloud. The system
exhibits several interesting characteristics and suggest key
requirements for verifier design.

• We synthesize ideas from timed regular expressions, sym-
bolic automata, and parametric verification. To the best of
our knowledge, ours is the first to demonstrate a concrete
need and method for combining these concepts.

• We introduce the design and implementation of Horde a
system for at-scale runtime verification. Among other in-
novations, Horde includes a novel method for computing
location-dependent suppression of network events.

• We introduce a collection of invariants over distributed
network functions and an evaluation of Horde using these
functions and invariants.

2 Motivation: A Cloud-scale NAT Gateway
Our work is grounded in our experience with a large-scale pro-
duction network function (NF). The function, which balances
requests over a set of available servers, supports almost all
incoming external traffic in one of the largest cloud providers

Figure 1: The architecture of our NATGW. The blue arrows
show the path of the SYN packet of an incoming flow: it is
spread across a set of packet workers, which send the packet
to the flow decider in charge of that flow. The flow decider
chooses a server to send the flow to, replicates the mapping,
and installs it in the original packet worker. Red arrows trace
the allocation of the mapping for the reverse flow.

in the world. Its design and requirements will serve as a moti-
vating example for the remainder of this paper.

Like other network functions of similar scale [18, 19],
NATGW is implemented entirely in software, is distributed
across a pool of servers, and replicates state for fault tolerance.
Routers use ECMP-based anycast to randomly direct packets
to a NATGW node, which then rewrites the destination IP and
port to a target server. The same translation occurs for packets
in the reverse direction (from the receiver to the sender).

The NATGW architecture is composed of two types of
nodes (Figure 1): packet workers and flow deciders. Packet
workers process every packet passing through the NATGW,
parsing its header, looking up the target server, and rewriting
the packet header to point to that target. The mapping of a
flow to a target server is decided with the help of a sharded
set of flow deciders. The flow deciders cache and replicate
these mappings to other flow deciders to ensure availability.

Flow allocation. When the first packet of a new flow arrives
at a packet worker, the packet worker uses a hash of the 5-
tuple to identify the “primary” flow decider that owns the flow
and forwards the packet to that decider. The primary then:

1. Decides which server to send the new flow to and installs
the mapping in the local flow cache.

2. Sends the reverse mapping to the flow decider that “owns”
the other end of the flow. Together, these two mappings
cover translation for both incoming and outgoing traffic.

3. These primary deciders greedily copy their mappings
to the cache of other flow deciders in a manner akin to
chain replication: decider i will try to copy to deciders
(i+1) mod N and (i+2) mod N, where N is the number
of deciders. If one is down, it switches to (i+3) mod N.

4. Next, the primary flow decider will install the mapping
into the originating packet worker.

After the initial flow allocation, a packet worker can pro-
cess all subsequent packets of the flow without coordination
with other nodes. If the packet worker fails, anycast redirects
the packet to another packet worker. The new worker sends
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the packet to the primary flow decider, fetching the existing
mapping. If the flow decider fails, packet workers query the
next deciders in the sequence until they find the mapping.

Flow mapping timeouts. All components time out their flow
mappings to ensure stale entries are eventually removed.

To ensure NATGW maintains mappings for active flows,
packet workers periodically send a keepalive message to the
primary decider. The primary forwards the keepalive to all
replicas, refreshing the timeout on every instance of the map-
ping in the system. In parallel, the primary forwards the
keepalive to the primary in charge of the reverse mapping.

Eventual consistency. This NATGW design exhibits some
interesting properties. One of them is a choice to allow for
temporary inconsistency in the presence of node failures in
order to satisfy certain practical and performance constraints.

For example, consider three replicas of a flow mapping P,
A, and B, where P is the primary. To delete the mapping, P
would send a delete request to both of the other nodes. Now
imagine the message to A is dropped. Rather than waiting
for A, the others will go ahead and delete f . If, later, P fails,
packet workers will contact A for the mapping, which will
return a stale/inconsistent result until a timeout or periodic
sync eliminates the inconsistency.

We note that there are known mitigations to the above
behavior (e.g., querying a quorum on every packet or initiating
a view change algorithm on P’s failure); however, these come
with significant performance costs. Instead, this system is
an example of a deployed architecture that chooses eventual
consistency after careful consideration of its drawbacks and
alternative solutions. Our work is motivated by our operators’
experience with such behaviors.

3 Design Goals
Our runtime verifier targets the following design goals:

Practicality. Network functions are complex, written in a
variety of languages, and frequently rely on external libraries,
drivers, and other components. NATGW, for example, is built
using libraries like DPDK and interacts with an ecosystem of
networking hardware and configurations. The intricacies of
the systems, the richness of their dependencies, and the rapid
evolution of all the associated components mean the system
is not easily modeled or accurately simplified. Verification
should be of the end-to-end system, in situ.

Horde should not place too much additional burden on
developers: we should not require engineers to perform non-
trivial proof writing (as mandated by many deductive rea-
soning techniques). NATGW has over 40 thousand lines of
code—Horde should avoid incurring a proportional overhead.

Expressiveness. Prior work has observed a gap between state-
of-the-art verification tools and the requirements of modern
networks [11]. In particular, it is challenging to specify invari-
ants having to do with: (1) parametric variables over values

Figure 2: The architecture of Horde. NF instances generate
and feed events into a set of local state machines. The NF
instances use these state machines to determine if they can
hide unnecessary messages before exporting the rest to the
global verifier. These messages pass through a Kafka cluster
and are streamed to a set of Flink-based verification engines.

like locations or identifiers, (2) coordination between network
devices, and (3) timing of events. Moreover, since the number
of devices (e.g., flow deciders) may vary over time as the
system scales out, it is useful to express properties in a way
that does not require explicitly naming components.

Scalability. Just as a single machine cannot hope to handle all
traffic entering a large network, it also cannot be expected to
verify the correctness of the entire network. Rather, the verifer
should be able to scale out to arbitrary size and require fewer
resources than the original system. In pursuit of that goal, the
verifier should attempt to minimize as much as possible the
number of messages exported to a logically centralized aggre-
gator, e.g., by exporting events (resulting from the execution
of the NF) rather than packets (the inputs to the NF).

Graceful degredation of accuracy. As we describe in Sec-
tion 7.3, perfect precision and recall is impossible in an asyn-
chronous system without substantial overhead. Instead, our
correctness goal is in the same spirit as NATGW’s: perfect
recall under the assumption of ‘partial synchrony’ [20] and no-
tifications of potential false positives/negatives after-the-fact.
Our operators find this is sufficient for most cases.

4 Horde’s Architecture
We present the design and implementation of a practical, ex-
pressive, and scalable verifier for large and complex NF de-
ployments. Our system, Horde, is a combination of an invari-
ant specification language and a scale-out runtime system.
Horde takes a grey-box approach, requiring minimal changes
and access to the underlying source code to export events of
interest to the verifier. It verifies NF executions by:

Specifying invariants and exporting events. Operators
write invariants over events. To provide them with sufficient
expressiveness to check network-level events, Horde comes
equipped with a new invariant language based on writing sym-
bolic regular expressions over a global trace of events (and
their locations) in the system. Horde’s language includes a
notion of parameterized “variables” that allows invariants to
be written in a way that holds for any combination of variable
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1 { "fields" : [
2 {"eventType" : 16},
3 {"nodeType" : 8},
4 {"sourceIPv4or6" : 8},
5 {"sourceIPv4or6==4" : [ {"srcIP" : 32} ],
6 "sourceIPv4or6==6" : [ {"srcIP" : 128} ]},
7 ...
8 ],
9 "constants" : {

10 "NAT_ALLOCATION" : 1, // eventTypes
11 "FLOWCACHE_CONSENSUS" : 769,
12 "PACKET_WORKER" : 0, // nodeTypes
13 ...
14 }}

Figure 3: A snippet of the event schema for the NATGW.

instantiations subject to constraints.
NF developers export any relevant events, along with their

PTP timestamp, to the verifier. Note that, because invariants
are defined and checked only across related flows, we only
need to know the correct ordering for events pertaining to
those flows: the sub-microsecond-scale synchronization of
PTP suffices for our needs. For many production networks,
these types of event exports are already common.

Verifying the invariants. To scale up checking of these in-
variants, Horde does two things. First, it Horde automatically
analyses and splits verification into local and global com-
ponents in order to scale. The local level resides at the NF
instances themselves, where Horde infers from local events
whether it can suppress the event before exporting it to the
global Horde verifier. Second, Horde leverages the fact that
most network invariants are defined across related flows rather
than globally—for instance, on the granularity of a 5-tuple.
Events are automatically sharded across a cluster of scale-out
stream processing workers using Kafka [21] and Flink [22].

Overview. Figure 2 shows Horde’s architecture. Users write
a set of invariants that describe classes of incorrect behavior.
Horde translates these to a set of symbolic automata and then
splits the automata into local and global components. It then
deploys these to NF instances and global verifiers.

At runtime, NF instances stream events into the pipeline.
The local Horde agent filters and shards events, the message
brokers aggregate and compact those streams, and the global
verifiers determine, for the shard, whether a violation occurred.
Kafka and Flink will automatically allocate resources and load
balance requests to ensure scalability.

5 Specification Language
Users define system events and invariants over those events
using two types of specifications that are inputs to Horde.

5.1 Event Definitions
Users specify the format of the event messages that arrive
at the local verifier. Horde expects these messages to be in
the form of packed arrays of raw binary data whose format is

1 FILTER((eventType == FLOWCACHE_PRIMARY_ADD
2 || eventType == FLOWCACHE_REMOVE_ENTRY)
3 && workerType == FD)
4 GROUPBY(srcIP, dstIP, srcPort, dstPort, proto)
5 MATCH
6 (eventType == FLOWCACHE_PRIMARY_ADD) @ $X
7 ((eventType == FLOWCACHE_REMOVE_ENTRY) @ NOT $X)*
8 (eventType == FLOWCACHE_PRIMARY_ADD) @ NOT $X

Figure 4: An example invariant specification that ensures at
most one primary is ever active for a given flow.

defined with a JSON configuration file. For example, Figure 3
shows a selected subset of the definition for NATGW event
messages. ‘fields’ contains the ordered list of expected fields
in the message. Each field is defined by a JSON dictionary
specifying the field’s name and its length in bits—for instance,
the first 16 bits of the event message is an eventType.

Conditionals. In addition to specifying the length of each
field and their ordering, Horde allows users to implement
simple conditional parsing logic. The example event defini-
tion shows one such use where srcIP can be either IPv4 or
IPv6. In the configuration shown, event messages include a
8-bit field that specifies the IP version number. Depending
on the value of that version number, the next field is either
a 32-bit srcIP field or a 128-bit field. These branches can
define entire sub-headers and can contain nested conditionals.

Named constants. Horde allows users to define named con-
stants (to use in invariant policies) which are integer values
represented in decimal, hexadecimal, or binary notation. We
show four such definitions of constants: two for values of the
eventType field and two for the nodeType field.

5.2 Invariant Policy Definitions

Horde parses incoming event messages and checks them
against a set of user-defined invariants. Operators write these
invariants using Horde’s domain-specific language. Operators
define invariants separately and their specification includes
transformations and expressions.

We show an example invariant for our NATGW in Figure 4
which only pertains to a subset of events (lines 1 and 2).
Horde checks it per-5-tuple (line 4). A violation occurs when
a node $X adds a primary mapping (line 6) and then a different
node (NOT $X) adds the same mapping as the primary (line 8)
without $X removing it. The dollar sign syntax differentiates
an arbitrary-valued variable from event fields and constants.

We show an example of an invariant for a stateful firewall
in Figure 5. The invariant matches on a per-location basis
where the firewall initializes a traffic for outbound flows from
source IP $S and destination IP $D and later sees traffic in the
reverse direction dropped. Any number of intervening events
can occur between the initial and the dropped packet (line 4).

Appendix A illustrates the full invariant policy grammar.

4



1 FILTER(eventType == INIT || eventType == DROP)
2 GROUPBY(LOCATION)
3 MATCH
4 (eventType==INIT, srcIp==$S, dstIp==$D) @ ANY
5 (. @ ANY)*
6 (eventType==DROP, srcIp==$D, dstIp==$S) @ ANY

Figure 5: An example invariant that ensures a stateful firewall
does not drop reverse traffic for an open connection.

5.2.1 Transformations
In order to scale, Horde uses a set of user-defined and
invariant-specific transformations. Horde uses these trans-
formations to perform an initial filtering and aggregation and
to identify valid sharding strategies. Horde currently supports
three transformations: GROUPBY, FILTER, and MAP.

Operators can use GROUPBY to indicate which groups of
flows the invariant pertains to. For example, when we wish to
guarantee at most one primary is active (Figure 4) for each
flow, the GROUPBY identifies unique flows. Horde uses GROUPBY
to both simplify the invariant specifications and to assist in
the sharding of invariant checking.

FILTER indicates which events the invariant cares about
and the worker type at which those events occur. In our run-
ning example, we only care when a flow decider adds a flow
as a primary and when they delete the flow mapping from
the cache; we can filter all other types of events. These two
transformations are critical for reducing the number of events
handled by the verification framework.

To these, we add MAP, which computes a new field based on
a mathematical expression over fields of the event message.

5.2.2 Invariant Expressions
We define invariants through a sequence of events that re-
sult in a violation of a particular policy. Users specify these
sequences with a regular-expression-like language over the
fields of the event message. In our example (Figure 4), these
expressions come after the set of transformations and must
appear after a MATCH statement.

As in regular expressions, the language describes patterns
over pre-defined elements. In Horde’s case, elements are de-
fined as a set of matching operations over the fields of the
event message—the example shows matches on event types.
A match can occur at any point in the stream of events and
triggers on every occurrence of the match, not just the first.

As in other regular languages, users can list the sequence
of expected elements and use operators like ‘*’, ‘+’, and ‘?’
to signify repetitions. Users can also leverage the functions
CHOICE and SHUFFLE. In CHOICE, an occurrence of any one of
the contained expressions matches. In SHUFFLE, the contained
events can arrive in any order, but must all arrive.

Locations. In distributed NFs, an important feature is that
correct behavior is defined not only on the events and their or-
der, but on where the events occurred. Therefore, every event
match is accompanied by a location specifier. This is useful

1 MAP(srcIP < dstIP ? srcIP : dstIP, IP1)
2 MAP(srcIP < dstIP ? dstIP : srcIP, IP2)
3 MAP(srcIP < dstIP ? srcPort : dstPort, port1)
4 MAP(srcIP < dstIP ? dstPort : srcPort, port2)
5 FILTER(flag==FIN || flag==ACK || flag==FIN_ACK)
6 GROUPBY(IP1, IP2, port1, port2)
7 MATCH
8 (flag == FIN) @ $X
9 SHUFFLE(

10 (flag == FIN, TIME == $s) @ $Y,
11 (flag == ACK, TIME == $t) @ $Y)
12 (flag == SYN, TIME - min($s, $t) <= 30000) @ $X

Figure 6: An example of a timing invariant that checks the
behavior of TCP’s TIME-WAIT state [23].

for specifying matches, but is also important for determining
how we might partition evaluation of the invariant across local
and global verifiers (see Section 6). In both cases, the goal
of forcing the user to specify the location of the events is to
determine whether each pair of events are expected to occur
at the same or at difference NF instances.

We have one named location in Figure 4 ($X). Lines 7-8 in-
dicate that events must occur at a different location than those
of lines 6. But the invariant does not constrain the relationship
between the locations of the events of lines 7-8. Users can
name multiple locations and specify multiple predicates, e.g.
to ensure event 1 is at $X; event 2 is at $Y (not $X); and event
3 is at NOT $X, NOT $Y, or event 4 is at location of ANY.

If a pattern match is ambiguous, i.e., there are multiple ways
to match the invariant to the pattern, then this could result in
multiple (different) ‘first occurrences’ — Horde tracks all of
them. For example, consider the invariant: (A @ $X) (A @
$Y) This invariant specifies that, for any two adjacent events,
A, if the events occur at different locations, we have a violation.
Thus, if we observe three events, (A @ W1), (A @ W2), and
(A @ W3), the invariant will match twice: once for {$X=W1,
$Y=W2} and once for {$X=W2, $Y=W3}.

Simply enumerating all possible assignments of NF in-
stances to variables would lead to an unacceptably inefficient
implementation. Further, any change in membership would
require us to fully recompile and re-install all invariants across
the system. Instead, we lazily track potential candidates for
location variables at runtime using a multi-leveled tree data
structure, which we describe in detail in Section 6.

Variables. Horde generalizes the state tracking afforded to
locations in order to track other types of state in the NF. Ex-
amples of non-location stateful properties include the IP/port
NAT mappings of the NATGW and connection tracking in
a firewall. As these variables do not indicate or impose re-
strictions on the location of the event, we do not use them for
determining the partitioning of the invariant execution.

Timing. Timeouts and deadlines are common in NFs. To
specify them, users can use parameterized variables to match
an event timestamp field and leverage arithmetic operations
to compare the time between multiple events. For example,
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S 1 2

ET==ADD
^ r==X

TRUE

ET==ADD
^ r!=X

ET==REMOVE
^ r!=X

Figure 7: SFA for Figure 4 with some field names and con-
stants abbreviated as well. r indicates location.

Figure 6 defines violations of TIME-WAIT semantics of TCP
flows, assuming only packet sends are captured. This defines
a violation where a SYN occurs within 30 s of the passive
closer’s FIN/ACK (more examples in Appendix B).

6 State Machine Generation
Horde checks for violations of invariants efficiently by trans-
lating each of the invariants into a state machine. In contrast
to traditional finite-state automata, Horde requires a combina-
tion of complex features, e.g., timing, arithmetic, field/location
variables, and regular expression event patterns.

Horde, thus, generates its state machines in three stages:
it constructs a symbolic non-deterministic finite automaton
(SFA) [24] that matches on a single specified violation, deter-
minizes the SFA to a symbolic deterministic finite automaton
(SDFA) to reduce runtime overhead, and constructs local state
machines from the global SDFA.

6.1 Constructing the SFA
We first convert all predicates on events into boolean logic
with equalities/inequalities by taking the conjunction of all
event field matches and the location specifier. For example,
we transform an event match (A==B, C==D) @ NOT $X to
the predicate (A==B ^ C==D ^ r!=X), where r is the place-
holder for the event’s location, which we determinize at run-
time. A ‘!’ modifier on the event would negate this predicate.

Horde performs an additional check on the sequence of
generated predicates to facilitate efficient variable checking
(Section 7.2). Specifically, it checks via reachability analysis
that all uses of variables in either an arithmetic expression
or non-equality comparison (<, , >, and �) strictly follow
after their introduction via an equality comparison.

With the checked predicates, Horde constructs the SFA by
creating a start state, S, with a self-loop for any event (TRUE).
This self-loop ensures the pattern will match starting from
anywhere in the event trace. From the initial state S, Horde
recursively builds out the state machine using Thompson’s
construction [25], treating CHOICE as a choice operator, and
expanding SHUFFLE to all permutations. Figure 7 shows a
(minimized) SFA for the example invariant from Figure 4. We
mark the final state in the SFA as the accepting state, which
indicates a violation when reached.

The specified transitions may not cover the complete space
of possible events. All events that do not match any transition
out of the current state can not lead to a match.

{S} {S,1} {S,2}

ET==ADD
^ r==X

ET!=ADD
_ r!=X ET==ADD

^ r!=X

ET==REMOVE
^ r==X

(ET==REMOVE
^ r!=X) _

(ET==ADD
^ r==X)

ET==ADD
^ r==X

ET!=ADD _ r!=X

Figure 8: DSFA for the SFA in Figure 4. Colored, dashed
edges represent suppressible transitions.

Horde next determinizes the SFA: it generates an efficiently
executable DSFA from the SFA using standard symbolic au-
tomata techniques [24]. The result is a state machine where all
transitions are unambiguous and exhaustive. Figure 8 shows
the DSFA for the example. Each state in the DSFA stores the
set of SFA states the machine is in at any given time.

6.2 Local State Machines
Given a DSFA, we could timestamp and send all events to the
verifier, which would then apply the relevant transition and
report a violations upon reaching an accepting state. However,
doing so would require the verifier to process all events. We
scale Horde and reduce the load on the network by generating
a localized version of the state machine that is executed before
sending the event to the global verifier.

6.2.1 Suppressible Transitions
By localizing the global state machine we find the set of events
that will not impact the detection (or lack of detection) for
a user-specified violation before sending them to the global
verifier. Consider the DSFA in Figure 8. The three dashed
transitions in the state machine represent suppressible transi-
tions. Suppressible transitions match events we can hide from
the verifier without impacting the detection of a violation:

Definition 1. An event stream s is either empty s = e or an
event followed by another stream s = e · s0.

Definition 2. We write q e�! q0 to mean: from state q, event e
transitions to state q0. We lift this to event streams inductively
as q e�! q, and q e·s�! q00 iff q e�! q0 and q0 s�! q00 .

Definition 3. Transition t is suppressible if for any event e
matching t from state q, then (1) q e�! q0 means q0 is not an
accepting state, and (2) for any event stream s, and accepting
state qa then q e·s�! qa iff q s�! qa.

The two self-loops in Figure 8 are clearly suppressible (sat-
isfy Definition 3) since an event processed by such a loop will
not change the global state: (not) observing the event has no
effect, and the loops do not occur on accepting states. Perhaps
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Algorithm 1 Create a local state machine for a variable
1: input: Global DSFA G, variable V, filter F
2: output: Local DSFA L
3: procedure CREATELOCALDFA(G, V, F)
4: L := CopyStates(G)
5: for S States(G) do
6: for T Transitions(G, S) do
7: P := Predicate(G, T)
8: if SAT((F ^P) 6) (r =V )) then
9: AddTransition(L, TargetState(T), e)

10: P0 := Simplify(P, r==V)
11: AddTransition(L, TargetState(T), P0)
12: return Determinize(L)

less obvious is that the bottom-most edge is also suppress-
ible since from either state {S} or {S,2} one needs to see
the same two events to get back to the accepting state {S,2}.
For example, an ADD event at X followed by another at NOT X
will take either state {S} or {S,2} back to {S,2}. We never
mark transitions with time constraints as suppressible—we
assume the timing of an otherwise irrelevant event might still
be significant. Using this approach we mark the suppressible
edges of the global DSFA (Figure 8).

One can detect suppressible events using any number of
heuristics, with better ones leading to more suppressed events.

6.2.2 Local State Machine Construction
Horde uses local knowledge to determine whether an event
will be processed by a suppressible transition. Since each
local component is unaware of what might be happening at
other components, it must conservatively account for all pos-
sibilities. To determine (locally) whether an event is suppress-
ible, we create a new state machine for each location variable
where each state machine assumes it is playing the role of that
location in matching some violation (e.g., one machine for “I
might be X in a violation” and another for “I might be Y in a
violation”). Building off the previous example from Figure 8,
we start by constructing a single local state machine for X:

The first step in creating a local state machine is to model
the uncertainty other locations may introduce (Algorithm 1).
The algorithm takes the global state machine G, a variable V
(e.g., X), and a predicate F corresponding to the user-defined
FILTER statements, and returns a new localized SDFA.

The algorithm considers each transition T in G where T has
predicate P, and checks whether the formula (F^P) 6) (r =
V) is satisfiable (line 8). If so, then there exists a potential
event that makes it through the filter F and uses transition T
but which takes place at a location other than X. To model the
fact that other NF instances might send events that use this
transition, the algorithm adds a transition with e to the local
SFA L (line 9). An epsilon (e) transition is one which the local
SFA takes immediately and unconditionally. It accounts for
the possibility of concurrent execution of other NF instances
to represent that the global state could be in either state (the
one before or the one after the e transition).

{S} {S,1} {S,2}

ET==ADD
ET!=ADD, e FALSE, e

ET==REMOVE

ET==ADD, e

ET==ADD

ET!=ADD, e

{{S}} {{S},{S,1},{S,2}}

ET==ADDET!=ADD

ET==REMOVE

ET!=REMOVE

Figure 9: Local machine for location X from Figure 8. SFA is
shown on top and its equivalent DSFA is shown below. Col-
ored, dashed edges indicate locally suppressible transitions.

In either case, the algorithm then adds a local transition to L
by simplifying the existing transition predicate (P) to account
for the fact that the location is known (e.g., X, line 11). It
does so by partially evaluating the predicate with the assump-
tion that r==V (line 10). In Figure 8, for example, the tran-
sition (ET==REMOVE ^ r==X) is simplified to ET==REMOVE.
Figure 9 shows the local SFA for location X and its deter-
minized (DSFA) form. We will use this local DSFA through-
out the rest of the running example.

By executing the DSFA in Figure 9 locally, an NF instance
can learn some partial information about the state of the over-
all system. For example, assuming the NF is X, then after
seeing an ADD event, the NF instance recognizes that the
global state machine can be in any state: {S}, {S,1}, or {S,2}.
However, after locally processing a REMOVE event, the local
machine now knows it must be in state {S} once more.

6.2.3 Local Event Suppression

The local machine can hide events when it can prove they
would otherwise be processed by suppressible transitions in
the global machine. Algorithm 2 is used to create all the data
structures needed to suppress events locally. It takes the global
state machine G as input along with the user-defined filters F,
and produces as output a collection of local state machines
(Li) as well as a negated condition (NC).

The algorithm works by iterating over every location vari-
able in the invariant (line 5) and calling CreateLocalDFA to
build the local state machine (line 6). It walks over each local
transition (T) and attempts to mark the transition as locally
suppressible. To do so, it looks up all the global states the sys-
tem can be in for this local state (line 11) and checks whether
the local transition can process an event that is also processed
by, and is not suppressible for, some global transition T0 from
one of these states (line 16). If not, then every event must
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Algorithm 2 Construct local state machines
1: input: Global DSFA G, filter F
2: output: Local state Q = h{L1, . . . ,Lk},NCi
3: procedure LOCALIZE(G, F)
4: NC := false, LS := /0
5: for V Variables(G) do
6: L := CreateLocalDFA(G, V, F)
7: for S States(L) do
8: for T Transitions(L, S) do
9: suppress := true

10: P := Predicate(L, T)
11: for S0  GlobalStates(L, S) do
12: for T0  Transitions(G, S0) do
13: if CanSuppress(G, T0) then
14: continue
15: P0 := Predicate(G, T0)
16: if SAT(P^ (r =V )^P0) then
17: suppress := false
18: if suppress then MarkSuppressed(L, T)
19: LS := LS [ {L}
20: for S0  States(G) do
21: for T0  Transitions(G, S0) do
22: if CanSuppress(G, T0) then continue
23: NC := NC _ Simplify(Predicate(G, T0), r==Fresh())
24: return hLS, NCi

trigger a suppressible transition, so the event is suppressed.
In Figure 9, events matching ET!=ADD in state {{S}} are

suppressible: for each global state in the set ({S}), this event
must be processed by the suppressible self-loop transition.

Negated condition. The final part of the algorithm (lines 20
to 23) computes a “negated condition.” The local NF may not
correspond to any named locations (e.g., X) in the invariant:
Horde must handle the case where the NF instance is not X, but
may observe a relevant event (e.g., as NOT $X). We observe,
in such a case, the current machine can not possibly know
anything about the global automaton state since the other NF
instances that also are not X may be sending events that match
NOT $X transitions. The strategy is simple: the algorithm
computes the disjunction of all the transition predicates in
the global state machine subject to the knowledge that the
location r does not match any variable (line 23).

In the running example, the algorithm computes: (ET==ADD
^ Z==X) _ (ET==ADD ^ Z!=X) _ (ET==REMOVE ^ Z==X),
where Z is a fresh variable that is guaranteed to not match
any location in the predicate. The above condition simplifies
to ET==ADD. This means that the local machine must send
any FLOWCACHE_PRIMARY_ADD events regardless of its local
state. Note that non-location variables may introduce some
uncertainty at the local verifier, which may not be sure what
other NF instances have observed for their value. To address
this, Horde first tries to generate a predicate that accounts
for any possible variable assignment by enumerating all pos-
sible assignments from their ==/! = expressions, replacing
their occurrences in the negated condition, and computing
the disjunction of the resulting predicates. If any variables or

arithmetic operations remain in the disjunction, Horde will
simply not suppress any events, which is always safe.

7 Runtime System
We next describe the Horde runtime.

7.1 Workflow
We begin with the common case: NF instances synchronized
via PTP send events, at runtime, to a co-located local agent via
traditional IPC mechanisms. This local agent applies transfor-
mations, executes each of its local state machines, and keeps
track of variables. The local agent sends non-suppressible
events to the global verifier via a set of Kafka brokers.

Filtering, mapping, and grouping. After ingesting the
stream of PTP-timestamped events at each NF instances’ lo-
cal agent, the first task of Horde is to apply any applicable
transformations—FILTER, MAP or GROUPBY—to the raw stream.
As each invariant can have a different set of transformations,
this may require Horde to duplicate the incoming stream of
raw events (although it tries to avoid doing so when possible).
The end result is a set of keyed event streams: one stream for
each combination of invariant and GROUPBY key.

Computing suppression. The next such step, also preformed
locally, is to determine the suppressibility of events in each
keyed stream. Horde will pass the events through the local-
ized state machines generated in Section 6.2.2—one for each
location referenced in each invariant. For a given event and
invariant, Horde suppresses the event when (1) all localized
instances of the invariant would take a suppressible transition
when fed the current event and (2) the event does not satisfy
the negated condition. If either constraint is false, Horde sends
the event to a Kafka queue for the given keyed event stream.

As a concrete example, Figure 10 shows processing of a
series of events in the same GROUPBY group and the invariant
in Figure 4). The first event is an ADD event at flow decider
FD1. After seeing this event, FD1 will transition locally from
state q0 ({S}) to state q1 ({{S},{S,1},{S,2}}). Since this
transition is not suppressible, the event is sent to the verifier.
The next event is a REMOVE event that takes place at FD3. This
particular transition is suppressible and the negated condition
(ET==ADD) is not satisfied, thus, the event is suppressed.

This suppression can substantially reduce the number of
events the verifier receives. For example, if we had 12 flow de-
ciders then in a correct execution we would expect to receive—
after suppression—just 2 out of 13 events (the primary add,
the primary remove, and 11 suppressed non-primary removes).
This number of exported events would remain constant re-
gardless of the number of flow deciders.

Global state machines. Pulling from Kafka is a cluster of
Flink instances running the non-localized versions of the in-
variant state machines. Although each keyed stream can con-
tain events from every NF instance in the system, all the events

8



Time

Time

ADD@FD1
q0! q1

REMOVE@FD3
q0! q0

REMOVE@FD2
q0! q0

REMOVE@FD1
q1! q0

ADD@FD2
q0! q1

REMOVE@FD1
q0! q0

ADD@FD1
q0! q1

ADD@FD3
q0! q1Local:

Global:

⇤

{S}

FD1 ⇤

{S,1} {S}

⇤

{S}

FD2 ⇤

{S,1} {S}

FD2 FD1 ⇤

{S,2} {S,1} {S}

FD1 FD3 ⇤

{S,2} {S,1} {S}

no events

violation! violation!

Figure 10: Distributed execution for the invariant from Figure 4 on an example sequence of events for N flow deciders. Time
progresses from left to right. Local events are shown along the bottom line with the local state of the flow decider. We use q0 =
{{S}} and q1 = {{S},{S,1},{S,2}}. The global verifier’s state is shown at the top. Red, dashed edges indicate suppressed events.

are funneled to a single Kafka topic and Flink partition, each
of which is automatically provisioned, checkpointed, and load
balanced to worker nodes. As Flink does not guarantee that
events from different NF instances will arrive in order, Horde
stores these events and reorders them with an efficient priority
queue before passing them to the associated state machine.

One challenge is how long to wait for delayed events. One
approach is to maintain a list of all NF instances along with
the timestamp of the last event they sent to this partition
and only process time t when we have seen events from all
instances up to t + latency. Unfortunately, most NF instances
do not interact with most invariants and sending ‘null’ events
to every partition would be costly. Instead, Horde relies on the
assumption of a maximum latency T and handles violations
of the assumption with the techniques in Section 7.3.

Horde will hold each event for T local time before passing
it to the DSFA for processing. While processing events for a
given invariant, the verifiers will track all of the possible states
in which the associated state machine could be, as well as all
potential values of the invariant’s variables (see Section 7.2
for details). If any of the possible states is a ‘final’ state in the
invariant’s DSFA, Horde will raise an alert.

Consistent sampling. If scaling is still challenging despite
sharding the verifier, filtering relevant events, and suppress-
ing events locally, Horde provides a final mechanism that
lets users trade performance for completeness by sampling a
consistent set of events with consistent hashing based on the
GROUPBY key (e.g., a 5-tuple for NATGW). In this way, each
group is itself complete though false negatives remain possi-
ble when violations occur for 5-tuples that are not sampled.

7.2 Variable Tracking
Horde needs to track the value of locations and other variables
at runtime. Horde tracks all possible instantiations simultane-
ously using a multi-level tree data structure (the global state in
Figure 10). Since there is only one variable (X) in the example,
there is only one level in the tree. Intuitively, the tree captures
the state the global automaton would be in for every possible
instantiation of X. When the system starts, we are in state {S}

for any X (denoted by ⇤). After the first ADD event arrives at
the verifier from FD1, we fork the tree to separate out the old
case and a new case for X=FD1. When X is FD1, the verifier
takes the transition (ET== ADD^ r == X) to state {S,1}:
the current location r is FD1, and X is also FD1. Otherwise if
X!=FD1, it takes the self-loop transition to remain in {S}.

For the next event from FD1 (REMOVE), there is no new case
to fork, and applying the transition to both cases in the tree
leads to both being in state {S} once more. Therefore, the
states are collapsed together back to ⇤. This process continues
until the second to last event where a violation is detected for
the case where X = FD2 due to a duplicate add at FD1. The
final event (ADD at FD3) leads to a second violation, where now
X = FD1, and is subsequently caught by the implementation.

7.3 Fault Tolerance
Failures and message drops/delays can cause Horde to be-
come desynchronized from the ground-truth state of the sys-
tem. Even so, Horde is able to guarantee both precision and
recall of typical network violations under the assumption of
‘partial synchrony’ [20], i.e., that there exists a time, T , after
which there is some upper bound on message delivery time.
• Recall Under a partial synchrony assumption, Horde’s

practice of creating a self loop in the initial state of the
SFA means that all violations whose trace begins after
T will be accurately modelled in the state machine and
detected by Horde.

• Precision: Horde’s precision guarantees are less complete,
but still hold in practice. Specifically, we observe that
most of the invariants we studied contained some property
where flow state would eventually be dropped in reaction
to REMOVE_ENTRY or TCP FIN/RST event; such transitions
are common in networked systems and ensure that any
desynchronized state machine instances will eventually
transition back to the initial state.

In addition to the above, Flink provides some guarantees
that NF events are processed by the state machine exactly
once. Flink and Kafka also provide support for an end-to-end
guarantee of exactly once delivery, but with the overhead of
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Network Function Invariant Description LoC States Transitions

NAT Gateway

nat_decider_open: After a PW goes into closed state, at least one replica also goes into closed state. 14 4 10
nat_consensus: All TCP flows are only open after consensus. 5 2 4
nat_open_to: Open flows are timed out after 4 minutes of inactivity. 5 4 12
nat_primary_single: There is a single primary per flow. 10 3 7
nat_primary_to: The NATGW does not start an idle timeout for active flows. 13 6 18
nat_same_consensus: After TCP flow U is terminated, the next flow for U achieves consensus. 12 5 15
nat_syn_to: Flows with a TCP handshake in progress timeout after 5 seconds of inactivity. 5 4 12
nat_udp_same_consensus: If UDP flow U times out, the next flow for U achieves consensus. 12 6 17

Firewall [26]
fw_consistency: all Firewall instances should block suspicious IPs after a block rule is added. 6 4 12
fw_client_init: Ensure a flow can only be open after a client initiates it. 4 2 4
fw_syn_first: Data packets are only allowed after a SYN is sent. 4 2 4

DHCP dhcp_reuse: Leased addresses are not re-used until expiration or release. 6 4 12
dhcp_overlap: Leases should not overlap between DHCP servers. 6 3 7

Table 1: List of example invariants Horde can implement for several common network functions and systems.
atomic exporting of NF events, transactions, and rollbacks. In-
stead, Horde chooses to rely on partial synchrony and to alert
users after the fact when false positives may have occurred.
This can happen when an event arrives with a timestamp ear-
lier than the last processed event or when two events arrive
from an NF instance with a gap in their sequence numbers. It
can also happen with an NF instance (and its local agent) fail.
Upon restarting, the agent can immediately resume exporting
events, but the local state machine may be out of sync. In
this case, it can temporarily export all events (which is always
safe) until it can synchronize with the global verifier to rebuild
the local state machines from the global verifier’s state.

8 Implementation
We have implemented Horde with more than 6,500 lines of
Java 8 code, packaged with Maven v3.6. The implementation
consists of two major components: the compiler and runtime
system. We plan to make our implementation open source.

The compiler takes as inputs an event format specifica-
tion as described in Section 5.1 along with a set of invariant
specifications in the format of Section 5.2. For each invari-
ant, it generates the global state machine, the resulting local
state machines, information about suppressible events, and a
slew of other metadata about variables, filters, and partition-
ing. The lexer and parser use the ANTLR v4.7 [27] parser
generator, and the SFA construction and determinization use
the open-source symbolicautomata library [28], but with
the addition of a custom Z3-based [29] theory of Boolean
Algebra designed to support our invariant language.

We built the runtime system on top of Apache Flink [16]
and Kafka [17]. These frameworks are designed for scal-
able and robust stream processing and provide, intrinsically,
fault-tolerant and stateful processing, exactly-once semantics,
load balancing, flexible membership, checkpointing, etc. The
local agents ingest events directly, then filter, map, and sup-
press events as necessary before sending them to Kafka. The
global verifiers pull from Kafka into a timestamp-based prior-
ity queue from which events are dequeued after waiting for a
maximum delay; violations are logged to disk.

9 Evaluation
We evaluate Horde in CloudLab [30] with a number of net-
work functions and along a number of dimensions.

The deployed NAT gateway (§2). We use two event traces
captured from two different builds of the NAT gateway to
evaluate Horde. The builds capture the introduction of a set
of bugs that arose from the change of an interface between
two internal components, with V1 from before the change
and V2 from after. The traces are both for 7 flow deciders
over a 30 minute interval, but they contain a different number
of packets (V1: 23.7M; V2: 9.0M) owing to changes in the
protocol. The production deployment of NATGW does not yet
support fine-grained clock synchronization, but our operators
plan to add it in the system’s next version. Instead, we capture
the event traces and correct for time drift using a set of known
synchronization points within the event stream. In total, there
are eight invariants for NATGW (see Table 1).

A distributed firewall. We perform a collection of micro-
benchmarks using an open-source, stateful, and distributed
firewall implementation built on iptables, conntrackd, and
keepalived [26]). On the firewall, we check various invari-
ants, some of which were derived from [31]. The list of spe-
cific invariants we check are listed in Table 1.

We deploy this firewall on a topology with four clients, four
internal hosts on a single LAN, and four firewall nodes inter-
posing between the two groups. The firewalls are configured
as two high-availability groups with two primaries and two
hot standbys. Each primary-standby group shares a virtual IP
with the VRRP protocol. Traffic between external hosts and
internal servers is based on the traces provided in [32].

Evaluation metrics. We evaluate Horde along a number of
key dimensions: lines of code, throughput, latency, and CPU
overhead. In addition, our micro-benchmarks show Horde’s
ability to scale as the number of nodes in the NF deployment
increase by demonstrating the benefits of our event suppres-
sion scheme. Finally, we find Horde is able to identify four
bugs in the NAT gateway which were confirmed by our opera-
tors. Similarly, it identified all bugs in the distributed firewall.
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Invariant Version 1 Version 2

nat_decider_open 0 0
nat_consensus 0 0
nat_open_to 1 45019
nat_primary_single 0 0
nat_primary_to 1 29964
nat_same_consensus 536 259
nat_syn_to 0 2697
nat_udp_same_consensus 0 0

Table 2: Violations found in traces for NATGW versions. Note
that V1’s trace contains more events than V2’s, which may ac-
count for the difference in nat_same_consensus violations.

9.1 Bugs Identified by Horde

NATGW Bugs. Running the traces through Horde, we
discovered violations of nat_open_to, nat_primary_to,
nat_same_consensus, nat_syn_to, all of which were con-
firmed as caused by bugs by the NATGW team. Table 2 shows
the absolute number of violations of each. A few notes about
this process follow.
nat_open_to was by far the most frequent violator in V2.

Discussions with our operators revealed that in V2, this vio-
lation (and that of nat_syn_to) were due to related bugs in
the code: it had taken operators over an hour to identify the
issues while Horde identified it in under a minute. Although
nat_open_to also had a violation in V1, further examina-
tion revealed that the violation in V1 was due to an expected
consequence of eventual consistency—specifically one of the
replicas was getting update messages from the packet worker
but the primary did not and therefore started a timeout for the
flow. This led us to start checking for nat_primary_to.

Also prominent in both systems were violations of
nat_same_consensus. This violation occurred because the
flow was not closed or removed properly from one of the
replicas. The operators suspected this could be an issue, but
never had a method to test that hypothesis. Horde confirmed
the problem and helped the developers to formulate the test
setup to reproduce the issue.

Bugs in the distributed firewall rules. For the firewall, we
manually injected bugs in the firewall configuration to test
Horde’s ability to identify this category of errors. The injected
issues, for instance, always allowed external traffic from a
particular address range into the internal network, violating
fw_client_init. Horde found all of them.

9.2 Throughput of Horde

Horde’s global verifier keeps track of the set of possible states
for each invariant and the possible values for each value/lo-
cation. Thus, its throughput is directly correlated with the
number of invariants (Figure 11). To evaluate this scaling, we
run the V1/2 traces thorugh a random subset of the 8 NATGW
invariants using a single Task Slot on the global verifier (run-
ning on an Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz
machine). Even with this single-core execution, our optimiza-
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Figure 12: Throughput of a single Horde verification server
checking 7 invariants with different numbers of Task Slots.

tions allow Horde to scale and process over 60,000 events per
second for a single invariant (over 10,000 for 7 invariants).

Horde scales linearly as we add additional cores to the
global verifier (Figure 12). On a single machine, however, the
bottleneck is typically memory and I/O. Scaling with multiple
machines avoids this bottleneck.

9.3 Overhead of Horde

Horde imposes minimal CPU and memory overhead (Figures
13 and 14, respectively). This is especially important for the
local components as they are co-located with the production
NF instances. Horde’s CPU utilization remains around 0.1%
on average for the production NATGW while its memory
usage is always bellow 1.4 GB. As we expect, we observe the
CPU and memory usage for the local verifier is higher at the
primary NF instances as they tend to generate more events.

Figure 15 shows the CDF of Horde’s time to detection for
violations in the distributed firewall function. The time to
detection is low: in the median it takes roughly 70 ms from
the time the event was executed (the violation occurred) at
the NF instance until Horde raises an alert.

9.4 Efficacy of Suppression
Each optimization in Horde improves its scalability by reduc-
ing the number of events sent to the global verifier (reducing
the network overhead and the number of events processed at
the global verifier). Filter, removes the need to send events
that do not pertain to the invariants and reduces the number
of events sent to the verifier by up to 61% for the NATGW
(Table 3). Suppressible events can further reduce this number
(by up to an additional 12% in our experiments).
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10 Related Work
Runtime verification. Runtime verification has been well-
studied, with many papers dedicated to improving its expres-
siveness and performance. Horde borrows ideas from two
lines of work in the area. The first, is runtime verification
of distributed systems, which is broadly separated into two
categories based on whether the system assumes a synchro-
nized global clock [33]. In this respect Horde would be con-
sidered a decentralized [15, 33] runtime verification system.
The second, is parametric runtime verification, which focuses
on checking universally or existentially quantified expres-
sions [12–14, 34]. The location variables in Horde are exam-
ples of parametric variables. The main distinction of Horde
from prior work is its combination of parametric and decen-
tralized runtime verification through its support for location
variables. Moreover, Horde’s efficient implementation of this
combination of features through its use of sharding and local
symbolic state machine partitioning is new in this context.

NF and distributed systems verification. The concept of
NF verification is not new. Many prior works use verifica-
tion techniques to check/enforce correctness. Most of these
approaches are based on static verification of hand-written
NF models [5, 6, 10]. Such static checking can give strong
guarantees of correctness, but suffers from several drawbacks:
Unlike Horde, it can not check complex properties such as
temporal properties, can not catch implementation bugs, and
requires tedious and possibly error-prone hand-translation of
models for NF functionality.

Yet another approach to verifying complex distributed soft-
ware is through the use of semi-automated theorem provers
such as Dafny [35]. A good example of this approach is Iron-
Fleet [8]. A major drawback of this approach is that it requires
significant development effort. For example, verifying Iron-
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violation in the distributed firewall.

Version Generated After Filter After Suppression

V1 189M 92.9M (49.1%) 70.2M (37.1%)
V2 72.2M 36.7M (50.8%) 28.0M (38.8%)

Table 3: Total number of generated events, events processed
after filtering, and events processed after filtering and suppres-
sion for the NAT gateway with all 8 invariants.

Fleet involved tens of thousands of lines of proof. In contrast
Horde aims to be lightweight, requiring little to no developer
effort by catching bugs at runtime.

Stateless dataplane verification. Dataplane verification
tools such a HSA [36] and Anteater [37] verify the correct-
ness of a static snapshot of network forwarding tables. Later
tools such as Veriflow [38] perform runtime verification by
constantly re-verifying the network state as changes occur.
Each of these tools reasons about all packet behaviors—a
challenging task—however, their reasoning is limited to veri-
fication of stateless network forwarding. In contrast, Horde
focuses on verifying complex temporal and stateful proper-
ties of general-purpose distributed NFs. For example, Horde
can ensure a stateful firewall correctly allows traffic only for
connections that are established by an internal sender.

11 Discussion and Conclusion
Horde is a lightweight verification framework for verifying
distributed network functions. To scale to large systems with
minimal overhead, Horde leverages a two-tiered setup with
local monitors at each NF instance sending events to (and
hiding events from) a collection of sharded global verifiers.
While Horde can verify any distributed system, its scalability
will depend on whether the invariants of interest can utilize
its GROUPBY and suppression optimization schemes.

Finally, as Horde is the first to verify distributed network
functions at scale (and at runtime), there are a number of
aspects where follow up work may be needed. Included in this
set are explorations of other time synchronization protocols,
e.g., [39] or some other lightweight and precise event ordering
mechanisms. Also for future work are innovations in atomic
event export and transactions over streams in Horde.
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