cifar10 results after finding speed diff on clusters.

This commit is contained in:
Debadeepta Dey 2021-04-11 20:14:10 -07:00 коммит произвёл Gustavo Rosa
Родитель e768a2810d
Коммит 0562f2c09d
9 изменённых файлов: 221 добавлений и 26 удалений

8
.vscode/launch.json поставляемый
Просмотреть файл

@ -228,7 +228,7 @@
"request": "launch", "request": "launch",
"program": "${cwd}/scripts/main.py", "program": "${cwd}/scripts/main.py",
"console": "integratedTerminal", "console": "integratedTerminal",
"args": ["--full", "--algos", "proxynas_natsbench_space", "--datasets", "flower102"] "args": ["--full", "--algos", "proxynas_natsbench_space", "--datasets", "ImageNet16-120"]
}, },
{ {
"name": "Proxynas-Natsbench-Space-Toy", "name": "Proxynas-Natsbench-Space-Toy",
@ -655,7 +655,7 @@
"request": "launch", "request": "launch",
"program": "${cwd}/scripts/reports/proxynas_plots/cross_exp_plots.py", "program": "${cwd}/scripts/reports/proxynas_plots/cross_exp_plots.py",
"console": "integratedTerminal", "console": "integratedTerminal",
"args": ["--dataset", "natsbench_flower102", "args": ["--dataset", "natsbench_cifar10",
"--conf-location", "scripts/reports/proxynas_plots/cross_exp_conf.yaml"] "--conf-location", "scripts/reports/proxynas_plots/cross_exp_conf.yaml"]
}, },
{ {
@ -664,8 +664,8 @@
"request": "launch", "request": "launch",
"program": "${cwd}/scripts/reports/analysis_natsbench_zerocost.py", "program": "${cwd}/scripts/reports/analysis_natsbench_zerocost.py",
"console": "integratedTerminal", "console": "integratedTerminal",
"args": ["--results-dir", "D:\\archaiphilly\\phillytools\\zc_synthetic_cifar10", "args": ["--results-dir", "D:\\archaiphilly\\phillytools\\zc_flower102",
"--out-dir", "D:\\archai_experiment_reports"] "--out-dir", "D:\\archai_experiment_reports", "--reg-evals-file", "D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml"]
}, },
{ {
"name": "Analysis Zero Cost Conditional Natsbench Experiments", "name": "Analysis Zero Cost Conditional Natsbench Experiments",

Просмотреть файл

@ -0,0 +1,52 @@
from copy import deepcopy
from typing import Optional
import importlib
import sys
import string
import os
from overrides import overrides
import torch
from torch import nn
from overrides import overrides, EnforceOverrides
from archai.common.trainer import Trainer
from archai.common.config import Config
from archai.common.common import logger
from archai.datasets import data
from archai.nas.model_desc import ModelDesc
from archai.nas.model_desc_builder import ModelDescBuilder
from archai.nas import nas_utils
from archai.common import ml_utils, utils
from archai.common.metrics import EpochMetrics, Metrics
from archai.nas.model import Model
from archai.common.checkpoint import CheckPoint
from archai.nas.evaluater import Evaluater
from archai.algos.proxynas.freeze_trainer import FreezeTrainer
from archai.algos.proxynas.conditional_trainer import ConditionalTrainer
from nats_bench import create
from archai.algos.natsbench.lib.models import get_cell_based_tiny_net
def model_from_natsbench_tss(arch_index:int, dataset_name:str, natsbench_location:str)->Model:
# create natsbench api
api = create(natsbench_location, 'tss', fast_mode=True, verbose=True)
if arch_index > 15625 or arch_index < 0:
logger.warn(f'architecture id {arch_index} is invalid ')
supported_datasets = {'cifar10', 'cifar100', 'ImageNet16-120'}
if dataset_name not in supported_datasets:
raise NotImplementedError
config = api.get_net_config(arch_index, dataset_name)
model = get_cell_based_tiny_net(config)
return model

Просмотреть файл

Просмотреть файл

@ -0,0 +1,40 @@
import overrides
from typing import Optional, Type, Tuple
from archai.nas.exp_runner import ExperimentRunner
from archai.nas.model_desc_builder import ModelDescBuilder
from archai.nas.arch_trainer import TArchTrainer
from archai.common import common
from archai.common import utils
from archai.common.config import Config
from archai.nas.evaluater import Evaluater, EvalResult
from archai.nas.searcher import Searcher, SearchResult
from archai.nas.finalizers import Finalizers
from archai.nas.random_finalizers import RandomFinalizers
from archai.nas.model_desc_builder import ModelDescBuilder
class RandomNatsbenchTssExpRunner(ExperimentRunner):
@overrides
def run_search(self, conf_search:Config)->SearchResult:
search = self.searcher()
return search.search(conf_search)
@overrides
def run_eval(self, conf_eval:Config)->EvalResult:
evaler = self.evaluater()
return evaler.evaluate(conf_eval)
@overrides
def searcher(self)->Searcher:
return RandomNatsbenchSearcher()
@overrides
def evaluater(self)->Evaluater:
return RandomNatsbenchEvaluater()

Просмотреть файл

@ -0,0 +1,44 @@
import math as ma
from typing import Set
from archai.nas.searcher import Searcher, SearchResult
from archai.common.config import Config
from archai.nas.model_desc_builder import ModelDescBuilder
from archai.nas.arch_trainer import TArchTrainer
from archai.common.trainer import Trainer
from archai.nas.model_desc import CellType, ModelDesc
from archai.datasets import data
from archai.nas.model import Model
from archai.common.metrics import EpochMetrics, Metrics
from archai.common import utils
from archai.nas.finalizers import Finalizers
from archai.algos.proxynas.conditional_trainer import ConditionalTrainer
from archai.algos.proxynas.freeze_trainer import FreezeTrainer
from archai.algos.natsbench.natsbench_utils import model_from_natsbench_tss
class RandomNatsbenchTssSearcher(Searcher):
def search(conf_search:Config)->SearchResult:
# region config vars
max_num_models = conf_search['max_num_models']
ratio_fastest_duration = conf_search['ratio_fastest_duration']
top1_acc_threshold = conf_search['top1_acc_threshold']
# endregion
counter = 0
best_trains = [-ma.Inf]
fastest_cond_train = ma.Inf
archids_sampled = set()
while counter < max_num_models:
# sample a random model from tss
# if during conditional training it
# starts exceeding fastest time to
# reach threshold by a ratio then early
# terminate it
#

Просмотреть файл

@ -12,7 +12,7 @@ nas:
model_desc: model_desc:
num_edges_to_sample: 2 num_edges_to_sample: 2
loader: loader:
train_batch: 256 # natsbench uses 256 train_batch: 1024 # natsbench uses 256
aug: '' # random flip and crop are already there in default params aug: '' # random flip and crop are already there in default params
trainer: # matching natsbench paper closely trainer: # matching natsbench paper closely
plotsdir: '' plotsdir: ''
@ -24,7 +24,7 @@ nas:
l1_alphas: 0.0 # weight to be applied to sum(abs(alphas)) to loss term l1_alphas: 0.0 # weight to be applied to sum(abs(alphas)) to loss term
logger_freq: 1000 # after every N updates dump loss and other metrics in logger logger_freq: 1000 # after every N updates dump loss and other metrics in logger
title: 'eval_train' title: 'eval_train'
epochs: 18 epochs: 30
batch_chunks: 1 # split batch into these many chunks and accumulate gradients so we can support GPUs with lower RAM batch_chunks: 1 # split batch into these many chunks and accumulate gradients so we can support GPUs with lower RAM
lossfn: lossfn:
type: 'CrossEntropyLoss' type: 'CrossEntropyLoss'

Просмотреть файл

@ -23,7 +23,7 @@ nas:
trainer: trainer:
plotsdir: '' plotsdir: ''
use_val: False use_val: False
top1_acc_threshold: 0.2 # after some accuracy we will shift into training only the last 'n' layers top1_acc_threshold: 0.1 # after some accuracy we will shift into training only the last 'n' layers
apex: apex:
_copy: '/common/apex' _copy: '/common/apex'
aux_weight: '_copy: /nas/eval/model_desc/aux_weight' aux_weight: '_copy: /nas/eval/model_desc/aux_weight'
@ -61,7 +61,7 @@ nas:
l1_alphas: 0.0 # weight to be applied to sum(abs(alphas)) to loss term l1_alphas: 0.0 # weight to be applied to sum(abs(alphas)) to loss term
logger_freq: 1000 # after every N updates dump loss and other metrics in logger logger_freq: 1000 # after every N updates dump loss and other metrics in logger
title: 'eval_train' title: 'eval_train'
epochs: 15 epochs: 10
batch_chunks: 1 # split batch into these many chunks and accumulate gradients so we can support GPUs with lower RAM batch_chunks: 1 # split batch into these many chunks and accumulate gradients so we can support GPUs with lower RAM
lossfn: lossfn:
type: 'CrossEntropyLoss' type: 'CrossEntropyLoss'

Просмотреть файл

@ -53,6 +53,16 @@
@REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_fb256_ftlr0.1_fte15_ct256_ftt0.6 --out-dir D:\\archai_experiment_reports @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_fb256_ftlr0.1_fte15_ct256_ftt0.6 --out-dir D:\\archai_experiment_reports
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_fb1024_ftlr1.5_fte5_ct256_ftt0.6_scu --out-dir D:\\archai_experiment_reports
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_fb1024_ftlr1.5_fte10_ct256_ftt0.6_scu --out-dir D:\\archai_experiment_reports
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_fb1024_ftlr0.1_fte5_ct256_ftt0.6_scu --out-dir D:\\archai_experiment_reports
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_fb1024_ftlr0.1_fte10_ct256_ftt0.6_scu --out-dir D:\\archai_experiment_reports
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_fb512_ftlr0.1_fte5_ct256_ftt0.6_scu --out-dir D:\\archai_experiment_reports
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_fb512_ftlr0.1_fte10_ct256_ftt0.6_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e01 --out-dir D:\\archai_experiment_reports @REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e01 --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e02 --out-dir D:\\archai_experiment_reports @REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e02 --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e04 --out-dir D:\\archai_experiment_reports @REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e04 --out-dir D:\\archai_experiment_reports
@ -74,6 +84,25 @@
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e08 --out-dir D:\\archai_experiment_reports @REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e08 --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e10 --out-dir D:\\archai_experiment_reports @REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e10 --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e01_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e02_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e04_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e06_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e08_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e10_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e20_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b1024_e30_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e01_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e02_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e04_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e06_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e08_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e10_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e20_scu --out-dir D:\\archai_experiment_reports
@REM python scripts/reports/analysis_regular_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\nb_reg_b256_e30_scu --out-dir D:\\archai_experiment_reports
@REM cifar100 @REM cifar100
@REM python scripts/reports/analysis_freeze_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\ft_c100_fb1024_ftlr0.1_fte5_ct256_ftt0.3 --out-dir D:\\archai_experiment_reports @REM python scripts/reports/analysis_freeze_natsbench_space.py --results-dir D:\\archaiphilly\\phillytools\\ft_c100_fb1024_ftlr0.1_fte5_ct256_ftt0.3 --out-dir D:\\archai_experiment_reports
@ -190,24 +219,22 @@ python scripts/reports/analysis_freeze_natsbench_space.py --results-dir D:\\arch
@REM Flower 102 @REM Flower 102
@REM ft_f102_fb2048_ftlr0.1_fte5_ct256_ftt0.2 @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb2048_ftlr0.1_fte5_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM ft_f102_fb2048_ftlr0.1_fte10_ct256_ftt0.2 @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb2048_ftlr0.1_fte10_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM ft_f102_fb2048_ftlr0.1_fte15_ct256_ftt0.2 @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb2048_ftlr0.1_fte15_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM ft_f102_fb2048_ftlr0.1_fte30_ct256_ftt0.2 @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb2048_ftlr0.1_fte30_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb1024_ftlr0.1_fte5_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb1024_ftlr0.1_fte10_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb1024_ftlr0.1_fte15_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb1024_ftlr0.1_fte30_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM ft_f102_fb1024_ftlr0.1_fte5_ct256_ftt0.2 @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb512_ftlr0.1_fte5_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM ft_f102_fb1024_ftlr0.1_fte10_ct256_ftt0.2 @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb512_ftlr0.1_fte10_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM ft_f102_fb1024_ftlr0.1_fte15_ct256_ftt0.2 @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb512_ftlr0.1_fte15_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM ft_f102_fb1024_ftlr0.1_fte30_ct256_ftt0.2
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb2048_ftlr0.1_fte5_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb256_ftlr0.1_fte5_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb2048_ftlr0.1_fte10_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb256_ftlr0.1_fte10_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb2048_ftlr0.1_fte15_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml @REM python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb256_ftlr0.1_fte15_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb2048_ftlr0.1_fte30_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb1024_ftlr0.1_fte5_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb1024_ftlr0.1_fte10_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb1024_ftlr0.1_fte15_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
python scripts/reports/analysis_freeze_natsbench_space_new.py --results-dir D:\\archaiphilly\\phillytools\\ft_f102_fb1024_ftlr0.1_fte30_ct256_ftt0.2 --out-dir D:\\archai_experiment_reports --reg-evals-file D:\\archai_experiment_reports\\nb_f102_b256_reg200\\archid_testacc.yaml
@REM Nasbench 101 @REM Nasbench 101

Просмотреть файл

@ -17,15 +17,21 @@ natsbench_cifar10:
# ft_fb2048_ftlr1.5_fte10_ct256_ftt0.3: 'fastarchrank stage 2: batch 2048, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.3' # ft_fb2048_ftlr1.5_fte10_ct256_ftt0.3: 'fastarchrank stage 2: batch 2048, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.3'
# ft_fb1024_ftlr1.5_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 1024, lr 1.5, <br> epochs 5, stage 1: batch 256, thresh 0.6' # ft_fb1024_ftlr1.5_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 1024, lr 1.5, <br> epochs 5, stage 1: batch 256, thresh 0.6'
# ft_fb1024_ftlr1.5_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 1024, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.6' # ft_fb1024_ftlr1.5_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 1024, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.6'
# ft_fb1024_ftlr1.5_fte5_ct256_ftt0.6_scu: 'fastarchrank stage 2: batch 1024, lr 1.5, <br> epochs 5, stage 1: batch 256, thresh 0.6 scu'
# ft_fb1024_ftlr1.5_fte10_ct256_ftt0.6_scu: 'fastarchrank stage 2: batch 1024, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.6 scu'
# ft_fb512_ftlr1.5_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 512, lr 1.5, <br> epochs 5, stage 1: batch 256, thresh 0.6' # ft_fb512_ftlr1.5_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 512, lr 1.5, <br> epochs 5, stage 1: batch 256, thresh 0.6'
# ft_fb512_ftlr1.5_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 512, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.6' # ft_fb512_ftlr1.5_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 512, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.6'
# ft_fb256_ftlr1.5_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 1.5, <br> epochs 5, stage 1: batch 256, thresh 0.6' # ft_fb256_ftlr1.5_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 1.5, <br> epochs 5, stage 1: batch 256, thresh 0.6'
# ft_fb256_ftlr1.5_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.6' # ft_fb256_ftlr1.5_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 1.5, <br> epochs 10, stage 1: batch 256, thresh 0.6'
# ft_fb1024_ftlr0.1_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6' # ft_fb1024_ftlr0.1_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6'
# ft_fb1024_ftlr0.1_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.6' # ft_fb1024_ftlr0.1_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.6'
ft_fb1024_ftlr0.1_fte5_ct256_ftt0.6_scu: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6 scu'
ft_fb1024_ftlr0.1_fte10_ct256_ftt0.6_scu: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.6 scu'
# ft_fb512_ftlr0.1_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6' # ft_fb512_ftlr0.1_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6'
# ft_fb512_ftlr0.1_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.6' # ft_fb512_ftlr0.1_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.6'
ft_fb256_ftlr0.1_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6' # ft_fb512_ftlr0.1_fte5_ct256_ftt0.6_scu: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6 scu'
# ft_fb512_ftlr0.1_fte10_ct256_ftt0.6_scu: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.6 scu'
# ft_fb256_ftlr0.1_fte5_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6'
# ft_fb256_ftlr0.1_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.6' # ft_fb256_ftlr0.1_fte10_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.6'
# ft_fb256_ftlr0.1_fte15_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 15, stage 1: batch 256, thresh 0.6' # ft_fb256_ftlr0.1_fte15_ct256_ftt0.6: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 15, stage 1: batch 256, thresh 0.6'
# ft_fb1024_ftlr0.1_fte5_ct256_ftt0.6_c9: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6, frozen till: cell 9' # ft_fb1024_ftlr0.1_fte5_ct256_ftt0.6_c9: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.6, frozen till: cell 9'
@ -49,6 +55,14 @@ natsbench_cifar10:
nb_reg_b1024_e10: 'regular train: batch 1024 epochs 10' nb_reg_b1024_e10: 'regular train: batch 1024 epochs 10'
nb_reg_b1024_e20: 'regular train: batch 1024 epochs 20' nb_reg_b1024_e20: 'regular train: batch 1024 epochs 20'
nb_reg_b1024_e30: 'regular train: batch 1024 epochs 30' nb_reg_b1024_e30: 'regular train: batch 1024 epochs 30'
nb_reg_b1024_e01_scu: 'regular train: batch 1024 epochs 01 scu'
nb_reg_b1024_e02_scu: 'regular train: batch 1024 epochs 02 scu'
nb_reg_b1024_e04_scu: 'regular train: batch 1024 epochs 04 scu'
nb_reg_b1024_e06_scu: 'regular train: batch 1024 epochs 06 scu'
nb_reg_b1024_e08_scu: 'regular train: batch 1024 epochs 08 scu'
nb_reg_b1024_e10_scu: 'regular train: batch 1024 epochs 10 scu'
nb_reg_b1024_e20_scu: 'regular train: batch 1024 epochs 20 scu'
nb_reg_b1024_e30_scu: 'regular train: batch 1024 epochs 30 scu'
nb_reg_b512_e01: 'regular train: batch 512 epochs 01' nb_reg_b512_e01: 'regular train: batch 512 epochs 01'
nb_reg_b512_e02: 'regular train: batch 512 epochs 02' nb_reg_b512_e02: 'regular train: batch 512 epochs 02'
nb_reg_b512_e04: 'regular train: batch 512 epochs 04' nb_reg_b512_e04: 'regular train: batch 512 epochs 04'
@ -61,6 +75,15 @@ natsbench_cifar10:
nb_reg_b256_e06: 'regular train: batch 256 epochs 06' nb_reg_b256_e06: 'regular train: batch 256 epochs 06'
nb_reg_b256_e08: 'regular train: batch 256 epochs 08' nb_reg_b256_e08: 'regular train: batch 256 epochs 08'
nb_reg_b256_e10: 'regular train: batch 256 epochs 10' nb_reg_b256_e10: 'regular train: batch 256 epochs 10'
nb_reg_b256_e01_scu: 'regular train: batch 256 epochs 01 scu'
nb_reg_b256_e02_scu: 'regular train: batch 256 epochs 02 scu'
nb_reg_b256_e04_scu: 'regular train: batch 256 epochs 04 scu'
nb_reg_b256_e06_scu: 'regular train: batch 256 epochs 06 scu'
nb_reg_b256_e08_scu: 'regular train: batch 256 epochs 08 scu'
nb_reg_b256_e10_scu: 'regular train: batch 256 epochs 10 scu'
nb_reg_b256_e20_scu: 'regular train: batch 256 epochs 20 scu'
nb_reg_b256_e30_scu: 'regular train: batch 256 epochs 30 scu'
colors: colors:
@ -175,12 +198,21 @@ natsbench_flower102:
ft_f102_fb1024_ftlr0.1_fte10_ct256_ftt0.2: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.2' ft_f102_fb1024_ftlr0.1_fte10_ct256_ftt0.2: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.2'
ft_f102_fb1024_ftlr0.1_fte15_ct256_ftt0.2: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 15, stage 1: batch 256, thresh 0.2' ft_f102_fb1024_ftlr0.1_fte15_ct256_ftt0.2: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 15, stage 1: batch 256, thresh 0.2'
ft_f102_fb1024_ftlr0.1_fte30_ct256_ftt0.2: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 30, stage 1: batch 256, thresh 0.2' ft_f102_fb1024_ftlr0.1_fte30_ct256_ftt0.2: 'fastarchrank stage 2: batch 1024, lr 0.1, <br> epochs 30, stage 1: batch 256, thresh 0.2'
ft_f102_fb512_ftlr0.1_fte5_ct256_ftt0.2: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.2'
ft_f102_fb512_ftlr0.1_fte10_ct256_ftt0.2: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.2'
ft_f102_fb512_ftlr0.1_fte15_ct256_ftt0.2: 'fastarchrank stage 2: batch 512, lr 0.1, <br> epochs 15, stage 1: batch 256, thresh 0.2'
ft_f102_fb256_ftlr0.1_fte5_ct256_ftt0.2: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 5, stage 1: batch 256, thresh 0.2'
ft_f102_fb256_ftlr0.1_fte10_ct256_ftt0.2: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 10, stage 1: batch 256, thresh 0.2'
ft_f102_fb256_ftlr0.1_fte15_ct256_ftt0.2: 'fastarchrank stage 2: batch 256, lr 0.1, <br> epochs 15, stage 1: batch 256, thresh 0.2'
shortreg: shortreg:
nb_f102_reg_b256_e10: 'regular train: batch 2048 epochs 10' nb_f102_reg_b256_e10: 'regular train: batch 2048 epochs 10'
nb_f102_reg_b256_e20: 'regular train: batch 2048 epochs 20' nb_f102_reg_b256_e20: 'regular train: batch 2048 epochs 20'
nb_f102_reg_b256_e30: 'regular train: batch 2048 epochs 30' nb_f102_reg_b256_e30: 'regular train: batch 2048 epochs 30'
zero_cost:
zc_flower102: 'zero cost score at initialization'
colors: colors:
freezetrain: 'red' freezetrain: 'red'
zero_cost: 'green' zero_cost: 'green'