зеркало из https://github.com/microsoft/archai.git
remove dead code, move CI pipeline to min python 3.8 which is needed by pytorch-lightning.
This commit is contained in:
Родитель
61a36ecf99
Коммит
0b30fa121b
|
@ -21,10 +21,10 @@ jobs:
|
|||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Sets up Conda with Python 3.7
|
||||
- name: Sets up Conda with Python 3.8
|
||||
uses: conda-incubator/setup-miniconda@v2
|
||||
with:
|
||||
python-version: 3.7
|
||||
python-version: 3.8
|
||||
activate-environment: archai
|
||||
- name: Installs the requirements
|
||||
shell: bash -l {0}
|
||||
|
|
|
@ -14,10 +14,10 @@ jobs:
|
|||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Sets up Python 3.7
|
||||
- name: Sets up Python 3.8
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.7
|
||||
python-version: 3.8
|
||||
- name: Installs pypa/build
|
||||
shell: bash -l {0}
|
||||
run: |
|
||||
|
|
|
@ -19,9 +19,9 @@ jobs:
|
|||
name: Lints with `flake8` and run unit tests with `pytest`
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
matrix:
|
||||
platform: [ windows-latest, ubuntu-latest ]
|
||||
python-version: ["3.7", "3.8", "3.9", "3.10"]
|
||||
python-version: ["3.8", "3.9", "3.10"]
|
||||
runs-on: ${{ matrix.platform }}
|
||||
steps:
|
||||
- name: Pulls the repository
|
||||
|
|
|
@ -21,7 +21,7 @@ jobs:
|
|||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.7", "3.8", "3.9", "3.10"]
|
||||
python-version: ["3.8", "3.9", "3.10"]
|
||||
steps:
|
||||
- name: Pulls the repository
|
||||
uses: actions/checkout@v3
|
||||
|
|
|
@ -160,4 +160,6 @@ dataroot/
|
|||
temp_code/
|
||||
mnist_test_run*/
|
||||
logs/
|
||||
output/
|
||||
output/
|
||||
snpe-2.5.0.4052.zip
|
||||
android-ndk-r25b-linux.zip
|
||||
|
|
|
@ -37,7 +37,7 @@ To install Archai via PyPI, the following command can be executed:
|
|||
pip install archai
|
||||
```
|
||||
|
||||
**Archai requires Python 3.7+ and PyTorch 1.7.0+ to function properly.**
|
||||
**Archai requires Python 3.8+ and PyTorch 1.7.0+ to function properly.**
|
||||
|
||||
For further information, please consult the [installation guide](https://microsoft.github.io/archai/getting_started/installation.html).
|
||||
|
||||
|
|
|
@ -1,63 +0,0 @@
|
|||
# Qualcomm SNPE SDK requires ubuntu:18.04 and python 3.6!
|
||||
FROM mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:latest
|
||||
|
||||
ARG SNPE_SDK_ZIP
|
||||
ARG SNPE_SDK_ROOT
|
||||
ARG ANDROID_NDK_ZIP
|
||||
ARG ANDROID_NDK_ROOT
|
||||
|
||||
ENV AZUREML_CONDA_ENVIRONMENT_PATH="/opt/miniconda/envs/snap"
|
||||
|
||||
RUN apt-get update && apt-get install -y build-essential libtool autoconf cmake unzip wget git curl python3 python3-dev python3-distutils python3-pip ffmpeg libsm6 libxext6 wget locales libjpeg-dev zlib1g zlib1g-dev libprotobuf-dev protobuf-compiler
|
||||
|
||||
# need cmake 3.22 to build latest version of onnx-simplifier on Ubuntu 18
|
||||
RUN apt update && \
|
||||
apt install -y software-properties-common lsb-release && \
|
||||
apt clean all
|
||||
RUN wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null
|
||||
RUN apt-add-repository "deb https://apt.kitware.com/ubuntu/ $(lsb_release -cs) main"
|
||||
RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 6AF7F09730B3F0A4
|
||||
RUN apt update && apt install -y cmake
|
||||
|
||||
# build latest version of protobuf needed by onnx
|
||||
RUN git clone https://github.com/protocolbuffers/protobuf.git
|
||||
RUN cd protobuf && \
|
||||
git checkout v3.16.0 && \
|
||||
git submodule update --init --recursive && \
|
||||
mkdir build_source && cd build_source && \
|
||||
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release && \
|
||||
make -j$(nproc) && \
|
||||
make install
|
||||
|
||||
# have to ensure default locale is utf-8 otherwise python bails with this error:
|
||||
# UnicodeEncodeError: 'ascii' codec can't encode character '\xe7' in position 17: ordinal not in range(128)
|
||||
RUN locale-gen en_US.UTF-8
|
||||
|
||||
WORKDIR /home/archai/snpe
|
||||
COPY "${SNPE_SDK_ZIP}" .
|
||||
RUN unzip "${SNPE_SDK_ZIP}"
|
||||
|
||||
WORKDIR /home/archai/ndk
|
||||
COPY "${ANDROID_NDK_ZIP}" .
|
||||
RUN unzip "${ANDROID_NDK_ZIP}"
|
||||
|
||||
WORKDIR /home/archai
|
||||
copy requirements.txt .
|
||||
|
||||
ENV SNPE_ROOT="/home/archai/snpe/$SNPE_SDK_ROOT"
|
||||
ENV ANDROID_NDK_ROOT="/home/archai/ndk/$ANDROID_NDK_ROOT"
|
||||
ENV PATH="$PATH:/home/archai:/home/archai/ndk/tools/${PLATFORM_TOOLS_ROOT}:/home/archai/snpe/${SNPE_SDK_ROOT}/bin/x86_64-linux-clang"
|
||||
ENV LC_ALL="en_US.UTF-8"
|
||||
ENV PYTHONPATH="/home/archai/snpe/$SNPE_SDK_ROOT/lib/python"
|
||||
ENV LD_LIBRARY_PATH="${AZUREML_CONDA_ENVIRONMENT_PATH}/lib:${SNPE_ROOT}/lib/x86_64-linux-clang:${LD_LIBRARY_PATH}"
|
||||
|
||||
# initialize conda environment. (conda comes with mcr.microsoft.com/azureml)
|
||||
RUN conda init bash
|
||||
|
||||
# this is how you activate a conda environment in Dockerfile
|
||||
ENV PATH="${AZUREML_CONDA_ENVIRONMENT_PATH}/bin:$PATH"
|
||||
|
||||
# Create conda environment
|
||||
RUN conda create -y -n snap python=3.6 pip=20.2.4
|
||||
|
||||
RUN pip install -r requirements.txt
|
|
@ -1,43 +0,0 @@
|
|||
# Readme
|
||||
|
||||
This folder contains docker setup for creating a custom Azure ML docker container that can access
|
||||
Qualcomm 888 dev kits via usb using the Android `adb` tool. This docker container is designed to run
|
||||
in a local minikube cluster on the machine that has the Qualcomm 888 dev boards plugged in so that
|
||||
these devices become available as an Azure ML Arc kubernetes compute cluster for use in [Azure ML
|
||||
Pipelines](https://learn.microsoft.com/en-us/azure/machine-learning/tutorial-pipeline-python-sdk).
|
||||
This way you can do a full Archai network search, Azure ML training of the models, SNPE
|
||||
Quantization, and evaluation of inference times on the target Qualcomm 888 DSP hardware all in one
|
||||
very cool Azure ML Pipeline.
|
||||
|
||||
First you will need to decide which Azure Subscription to use, install the
|
||||
[Azure Command Line Interface](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?tabs=azure-cli)
|
||||
and run `az account set --subscription id` to make the this subscription your default.
|
||||
|
||||
The setup script requires the following environment variables be set before hand:
|
||||
|
||||
- **SNPE_SDK** - points to a local zip file containing SNPE SDK version `snpe-1.64.0_3605.zip`
|
||||
- **ANDROID_NDK** - points to a local zip file containing the Android NDK zip file version `android-ndk-r23b-linux.zip`
|
||||
- **INPUT_TESTSET** - points to a local zip file containing 10,000 image test set from your dataset.
|
||||
|
||||
The [SNPE Readme](../snpe/readme.md) shows where to find those zip files.
|
||||
|
||||
After running this script you will see further instructions, first a docker command line in case you
|
||||
want to build the docker image that runs in a kubernetes cluster.
|
||||
|
||||
## Dockerfile
|
||||
|
||||
This builds a docker image that you can run in a Azure Kubernetes cluster that will do SNPE model
|
||||
quantization in the cloud. This frees up your Linux box that is managing Qualcomm devices and helps
|
||||
you increase your Qualcomm device utilization.
|
||||
|
||||
The `Setup.ps1` script shows what docker commands to run to build the image, how to login to your
|
||||
azure docker container registry, how to take your image for that container registry and push it
|
||||
to Azure. So you do not need to use the public docker.org container registry. You will decide
|
||||
what version number to attach to your image here and the same version needs to be specified in the
|
||||
following `quant.yaml`.
|
||||
|
||||
## minikube
|
||||
|
||||
Once the docker image is published you can configure your local Kubernetes cluster. If you are
|
||||
using `minikube` you can run this command to switch your `kubectl` command to operate on
|
||||
minikube's docker environment: `eval $(minikube -p minikube docker-env)`.
|
|
@ -1,22 +0,0 @@
|
|||
importlib-metadata!=4.7.0,<6,>=3.7.0
|
||||
packaging<22.0,>=20.0
|
||||
cryptography<39,>=38.0.0
|
||||
psutil
|
||||
tqdm
|
||||
pandas
|
||||
scipy
|
||||
numpy
|
||||
ipykernel
|
||||
sphinx
|
||||
azure-storage-blob
|
||||
azure-data-tables
|
||||
azureml-mlflow
|
||||
scikit-image
|
||||
scikit-learn
|
||||
scikit-build
|
||||
opencv-contrib-python
|
||||
onnx==1.11.0
|
||||
onnxruntime
|
||||
onnx-simplifier
|
||||
pyyaml
|
||||
matplotlib
|
|
@ -1,19 +0,0 @@
|
|||
SNPE_SDK_ZIP=snpe-2.5.0.4052.zip
|
||||
SNPE_SDK_ROOT=snpe-2.5.0.4052
|
||||
ANDROID_NDK_ZIP=android-ndk-r23b-linux.zip
|
||||
ANDROID_NDK_ROOT=android-ndk-r23b
|
||||
|
||||
set -e
|
||||
|
||||
if ! [ -f ${ANDROID_NDK_ZIP} ]; then
|
||||
curl -O --location "https://dl.google.com/android/repository/${ANDROID_NDK_ZIP}"
|
||||
fi
|
||||
|
||||
if ! [ -f ${SNPE_SDK_ZIP} ]; then
|
||||
echo "Please download the ${SNPE_SDK_ZIP} from :"
|
||||
echo "https://developer.qualcomm.com/downloads/qualcomm-neural-processing-sdk-linux-v2050"
|
||||
echo "and place the file in this folder."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
docker build . --build-arg "SNPE_SDK_ZIP=${SNPE_SDK_ZIP}" --build-arg "SNPE_SDK_ROOT=${SNPE_SDK_ROOT}" --build-arg "ANDROID_NDK_ZIP=${ANDROID_NDK_ZIP}" --build-arg "ANDROID_NDK_ROOT=${ANDROID_NDK_ROOT}"
|
|
@ -57,7 +57,7 @@ ENV LD_LIBRARY_PATH="${AZUREML_CONDA_ENVIRONMENT_PATH}/lib:${SNPE_SDK_ROOT}/lib/
|
|||
RUN wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
|
||||
RUN bash Miniconda3-latest-Linux-x86_64.sh -b -p ./miniconda3
|
||||
RUN conda init bash
|
||||
RUN conda create -y -n snap37 python=3.7 pip=20.2.4
|
||||
RUN conda create -y -n snap37 python=3.8 pip=20.2.4
|
||||
ENV PATH="${AZUREML_CONDA_ENVIRONMENT_PATH}/bin:$PATH"
|
||||
|
||||
RUN wget -O azcopy_v10.tar.gz https://aka.ms/downloadazcopy-v10-linux && tar -xf azcopy_v10.tar.gz --strip-components=1
|
||||
|
@ -65,22 +65,24 @@ RUN wget -O azcopy_v10.tar.gz https://aka.ms/downloadazcopy-v10-linux && tar -xf
|
|||
# this echo is a trick to bypass docker build cache.
|
||||
# simply change the echo string every time you want docker build to pull down new bits.
|
||||
RUN echo '03/17/2023 04:30 PM' >/dev/null && git clone https://github.com/microsoft/archai.git
|
||||
RUN cd archai && git checkout task_segmentation
|
||||
RUN cd archai && pip install -e .[dev]
|
||||
|
||||
RUN echo "using this pip version: " && which pip
|
||||
RUN echo "using this python version: " && which python
|
||||
|
||||
RUN pushd /home/archai/image_segmentation/snpe && \
|
||||
RUN pushd /home/archai/archai/tasks/face_segmentation/snpe && \
|
||||
python --version && \
|
||||
pip install -r requirements.txt
|
||||
|
||||
# Install our olive2 branch
|
||||
RUN echo '03/17/2023 04:20 PM' >/dev/null && git clone "https://github.com/microsoft/Olive.git"
|
||||
RUN cd Olive && && pip install -e .
|
||||
RUN python -m olive.snpe.configure
|
||||
RUN cd Olive && pip install -e .
|
||||
|
||||
RUN pip list
|
||||
|
||||
# This container starts running immediately so that the kubernetes cluster simply scales
|
||||
# automatically by how busy this run script is and we don't have to manually launch jobs.
|
||||
# automatically based on how busy this script is (see HorizontalPodAutoscaler in quant.yaml).
|
||||
COPY run.sh /home/archai/run.sh
|
||||
RUN ls -al /home/archai
|
||||
RUN cat run.sh
|
||||
|
|
|
@ -13,14 +13,11 @@ fi
|
|||
|
||||
python -m olive.snpe.configure
|
||||
|
||||
pushd $SNPE_ROOT
|
||||
source $SNPE_ROOT/bin/envsetup.sh -o $SNPE_ROOT/python36-env/lib/python3.6/site-packages/onnx
|
||||
popd
|
||||
pushd /home/archai/experiment
|
||||
|
||||
while true
|
||||
do
|
||||
python -u /home/archai/image_segmentation/snpe/azure/runner.py
|
||||
python -u /home/archai/archai/tasks/face_segmentation/snpe/azure/runner.py
|
||||
if [ $? != 0 ]; then
|
||||
echo "Script returned an error code!"
|
||||
fi
|
||||
|
|
|
@ -188,7 +188,7 @@ Write-Host "Test set url is $test_set_url"
|
|||
# ================= Write out info/next steps ================
|
||||
|
||||
Write-Host ""
|
||||
Write-Host docker build --build-arg --build-arg "`"MODEL_STORAGE_CONNECTION_STRING=$conn_str`"" `
|
||||
Write-Host docker build --build-arg "`"MODEL_STORAGE_CONNECTION_STRING=$conn_str`"" `
|
||||
--build-arg "SNPE_SDK_ZIP=$snpe_sdk_zip" --build-arg "SNPE_SDK_ROOT=$snpe_root" `
|
||||
--build-arg "ANDROID_NDK_ZIP=$android_sdk_zip" --build-arg "ANDROID_NDK_ROOT=$android_ndk_root" `
|
||||
. --progress plain
|
||||
|
|
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
Двоичные данные
tasks/face_segmentation/snpe/notebooks/quantize.zip
Двоичные данные
tasks/face_segmentation/snpe/notebooks/quantize.zip
Двоичный файл не отображается.
|
@ -1 +0,0 @@
|
|||
pip install -r requirements.txt --extra-index-url https://pkgs.dev.azure.com/azure-sdk/public/_packaging/azure-sdk-for-python/pypi/simple/
|
|
@ -1,218 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# IOT Hub Management\n",
|
||||
"\n",
|
||||
"This notebook can be used to configure your IOT hub so it can talk to your Qualcom HDK 888 devices."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"sys.path += ['./scripts']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Authentication package\n",
|
||||
"from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" credential = DefaultAzureCredential()\n",
|
||||
" # Check if given credential can get token successfully.\n",
|
||||
" credential.get_token(\"https://management.azure.com/.default\")\n",
|
||||
"except Exception as ex:\n",
|
||||
" # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work\n",
|
||||
" credential = InteractiveBrowserCredential()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# %pip install azure-mgmt-iothub\n",
|
||||
"# %pip install azure-iot-device\n",
|
||||
"# %pip install azure-iot-hub\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
" \n",
|
||||
"config = json.load(open(\".azureml/config.json\"))\n",
|
||||
"\n",
|
||||
"subscription = config['subscription_id']\n",
|
||||
"iot_resource_group = config['iot_resource_group']\n",
|
||||
"iot_hub_name = config['iot_hub_name']\n",
|
||||
"location = config['location']\n",
|
||||
"iot_hub_connection_string = config['iot_hub_connection_string']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"from azure.mgmt.iothub import IotHubClient\n",
|
||||
"\n",
|
||||
"iothub_client = IotHubClient(\n",
|
||||
" credential,\n",
|
||||
" subscription\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"MsrSnpeDeviceHub\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"async_iot_hub = iothub_client.iot_hub_resource.begin_create_or_update(\n",
|
||||
" iot_resource_group,\n",
|
||||
" iot_hub_name,\n",
|
||||
" {\n",
|
||||
" 'location': location,\n",
|
||||
" 'subscriptionid': subscription,\n",
|
||||
" 'resourcegroup': iot_resource_group,\n",
|
||||
" 'sku': {\n",
|
||||
" 'name': 'S1',\n",
|
||||
" 'capacity': 2\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"iot_hub = async_iot_hub.result() # Blocking wait for creation\n",
|
||||
"\n",
|
||||
"print(iot_hub.name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['f7a32443']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from utils import Adb\n",
|
||||
"\n",
|
||||
"adb = Adb()\n",
|
||||
"devices = adb.get_devices()\n",
|
||||
"\n",
|
||||
"print(devices)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2492867a\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from azure.iot.hub import IoTHubRegistryManager\n",
|
||||
"from azure.iot.hub.models import CloudToDeviceMethod, CloudToDeviceMethodResult, Twin\n",
|
||||
"from azure.iot.device import IoTHubDeviceClient, MethodResponse\n",
|
||||
"\n",
|
||||
"iothub_registry_manager = IoTHubRegistryManager(iot_hub_connection_string)\n",
|
||||
"device = iothub_registry_manager.get_twin('2492867a')\n",
|
||||
"\n",
|
||||
"print(device.device_id)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<azure.iot.hub.protocol.models.twin_py3.Twin at 0x249877eadd0>"
|
||||
]
|
||||
},
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# update the device twin to communicate the status of the device.\n",
|
||||
"iothub_registry_manager.update_twin(device.device_id, Twin(tags={'device_type': 'android', 'online': True}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "archai",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
},
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "6e17fa15dde6767600fffe17352775c2dcab3bfbf1fd9e12a03b13b1554fc994"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
|
@ -1,597 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Connect to Azure Machine Learning Workspace \n",
|
||||
"import json\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# make sure we have a scripts dir for the code to run our jobs.\n",
|
||||
"import os\n",
|
||||
"scripts_dir = \"./scripts\"\n",
|
||||
"os.makedirs(scripts_dir, exist_ok=True)\n",
|
||||
"\n",
|
||||
"config_file = \".azureml/config.json\"\n",
|
||||
"config = json.load(open(config_file, 'r'))\n",
|
||||
"\n",
|
||||
"for required_key in ['subscription_id', 'resource_group', 'workspace_name', 'storage_account_key', 'storage_account_name']:\n",
|
||||
" if not required_key in config:\n",
|
||||
" print(f\"### Error: please add a {required_key} to {config_file}\")\n",
|
||||
"\n",
|
||||
"storage_account_key = config['storage_account_key'] \n",
|
||||
"storage_account_name = config['storage_account_name']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Handle to the workspace\n",
|
||||
"from azure.ai.ml import MLClient\n",
|
||||
"\n",
|
||||
"# Authentication package\n",
|
||||
"from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" credential = DefaultAzureCredential()\n",
|
||||
" # Check if given credential can get token successfully.\n",
|
||||
" credential.get_token(\"https://management.azure.com/.default\")\n",
|
||||
"except Exception as ex:\n",
|
||||
" # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work\n",
|
||||
" credential = InteractiveBrowserCredential()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found the config file in: .azureml\\config.json\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Get a handle to the workspace\n",
|
||||
"ml_client = MLClient.from_config(\n",
|
||||
" credential=credential,\n",
|
||||
" path='./.azureml/config.json'\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Dataset with name face_segmentation_dataset was registered to workspace, the dataset version is 1.0.1\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from azure.ai.ml.entities import Data\n",
|
||||
"from azure.ai.ml.constants import AssetTypes\n",
|
||||
"\n",
|
||||
"face_data = Data(\n",
|
||||
" name=\"face_segmentation_dataset\",\n",
|
||||
" path=\"https://nasfacemodels.blob.core.windows.net/downloads/099000.zip\",\n",
|
||||
" type=AssetTypes.URI_FILE,\n",
|
||||
" description=\"Dataset for quantizing the model\",\n",
|
||||
" tags={\"source_type\": \"web\", \"source\": \"azure\"},\n",
|
||||
" version=\"1.0.1\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"face_data = ml_client.data.create_or_update(face_data)\n",
|
||||
"print(\n",
|
||||
" f\"Dataset with name {face_data.name} was registered to workspace, the dataset version is {face_data.version}\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AzureBlobDatastore({'type': <DatastoreType.AZURE_BLOB: 'AzureBlob'>, 'name': 'nassnpe205test', 'description': 'Datastore pointing to our dataset container.', 'tags': {}, 'properties': {}, 'print_as_yaml': True, 'id': '/subscriptions/c8b7f913-60fb-4759-a310-fc5630e56f99/resourceGroups/snpe-aml-rg/providers/Microsoft.MachineLearningServices/workspaces/snpe-aml-workspace/datastores/nassnpe205test', 'Resource__source_path': None, 'base_path': 'd:\\\\git\\\\microsoft\\\\image_segmentation\\\\snpe\\\\notebooks\\\\quantize', 'creation_context': None, 'serialize': <msrest.serialization.Serializer object at 0x0000017746404D30>, 'credentials': {'type': 'account_key'}, 'container_name': 'models', 'account_name': 'nassnpe205test', 'endpoint': 'core.windows.net', 'protocol': 'https'})"
|
||||
]
|
||||
},
|
||||
"execution_count": 47,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from azure.ai.ml.entities import AzureBlobDatastore\n",
|
||||
"from azure.ai.ml.entities._credentials import AccountKeyConfiguration\n",
|
||||
"\n",
|
||||
"# Register the blob store container for storing our models\n",
|
||||
"data_store = AzureBlobDatastore(\n",
|
||||
" name=\"nassnpe205test\",\n",
|
||||
" description=\"Datastore pointing to our dataset container.\",\n",
|
||||
" account_name=storage_account_name,\n",
|
||||
" container_name=\"models\",\n",
|
||||
" credentials=AccountKeyConfiguration(\n",
|
||||
" account_key=storage_account_key\n",
|
||||
" ),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"ml_client.create_or_update(data_store)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is the path shown in the Data asset we created to point to this model...\n",
|
||||
"subscription = ml_client.subscription_id\n",
|
||||
"rg = ml_client.resource_group_name\n",
|
||||
"ws_name = ml_client.workspace_name\n",
|
||||
"\n",
|
||||
"#datastore_path = f\"azureml://datastores/nasfacemodels/paths/Deci1\"\n",
|
||||
"datastore_path = f\"azureml://datastores/nassnpe205test/paths/Deci2\"\n",
|
||||
" \n",
|
||||
"model_path = f\"{datastore_path}/deci_optimized_2.onnx\"\n",
|
||||
"dlc_path = f\"{datastore_path}/model.dlc\"\n",
|
||||
"quant_dlc_path = f\"{datastore_path}/model.quant.dlc\"\n",
|
||||
"dlc_info_path = f\"{datastore_path}/model.info.txt\"\n",
|
||||
"quant_dlc_info_path = f\"{datastore_path}/model.quant.info.txt\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found your Kubernetes cluster named snpe-compute, awesome!\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from azure.ai.ml.entities import AmlCompute\n",
|
||||
"\n",
|
||||
"snpe_cluster = \"snpe-compute\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" # let's see if the compute target already exists\n",
|
||||
" cpu_cluster = ml_client.compute.get(snpe_cluster)\n",
|
||||
" print(\n",
|
||||
" f\"Found your Kubernetes cluster named {snpe_cluster}, awesome!\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"except Exception:\n",
|
||||
" print(f\"Computer cluster named {snpe_cluster} was not found ...\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Environment with name quantization is registered to workspace, the environment version is 1.3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from azure.ai.ml.entities import Environment\n",
|
||||
"\n",
|
||||
"custom_env_name = \"quantization\"\n",
|
||||
"\n",
|
||||
"pipeline_job_env = Environment(\n",
|
||||
" name=custom_env_name,\n",
|
||||
" description=\"Custom environment for running the quantizer pipeline\", \n",
|
||||
" image=\"snpecontainerregistry001.azurecr.io/snpe-2.5.0\",\n",
|
||||
" version=\"1.3\",\n",
|
||||
")\n",
|
||||
"pipeline_job_env = ml_client.environments.create_or_update(pipeline_job_env)\n",
|
||||
"\n",
|
||||
"print(\n",
|
||||
" f\"Environment with name {pipeline_job_env.name} is registered to workspace, the environment version is {pipeline_job_env.version}\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azure.ai.ml import command\n",
|
||||
"from azure.ai.ml import Input, Output\n",
|
||||
"\n",
|
||||
"data_prep_component = command(\n",
|
||||
" name=\"data_prep\",\n",
|
||||
" display_name=\"Data preparation for quantization\",\n",
|
||||
" description=\"Unzips the dataset and converts to .bin format\",\n",
|
||||
" inputs={\n",
|
||||
" \"data\": Input(type=\"uri_folder\")\n",
|
||||
" },\n",
|
||||
" outputs= {\n",
|
||||
" \"quant_data\": Output(type=\"uri_folder\", mode=\"rw_mount\")\n",
|
||||
" },\n",
|
||||
"\n",
|
||||
" # The source folder of the component\n",
|
||||
" code=scripts_dir,\n",
|
||||
" command=\"\"\"python3 data_prep.py \\\n",
|
||||
" --data ${{inputs.data}} \\\n",
|
||||
" --output ${{outputs.quant_data}} \\\n",
|
||||
" \"\"\",\n",
|
||||
" environment=f\"{pipeline_job_env.name}:{pipeline_job_env.version}\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"convert_component = command(\n",
|
||||
" name=\"convert\",\n",
|
||||
" display_name=\"Convert .onnx to .dlc\",\n",
|
||||
" description=\"Converts the onnx model to dlc format\",\n",
|
||||
" inputs={\n",
|
||||
" \"model\": Input(type=\"uri_file\")\n",
|
||||
" },\n",
|
||||
" outputs= {\n",
|
||||
" \"dlc\": Output(type=\"uri_file\", path=dlc_path, mode=\"rw_mount\")\n",
|
||||
" },\n",
|
||||
"\n",
|
||||
" # The source folder of the component\n",
|
||||
" code=scripts_dir,\n",
|
||||
" command=\"\"\"python3 convert.py \\\n",
|
||||
" --model ${{inputs.model}} \\\n",
|
||||
" --output ${{outputs.dlc}} \\\n",
|
||||
" \"\"\",\n",
|
||||
" environment=f\"{pipeline_job_env.name}:{pipeline_job_env.version}\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"quant_component = command(\n",
|
||||
" name=\"quantize_model\",\n",
|
||||
" display_name=\"Quantize the Model\",\n",
|
||||
" description=\"Runs snpe-dlc-quant on the model using the prepared quantization dataset\",\n",
|
||||
" inputs={\n",
|
||||
" \"data\": Input(type=\"uri_folder\"),\n",
|
||||
" \"list_file\": Input(type=\"string\"),\n",
|
||||
" \"model\": Input(type=\"uri_folder\")\n",
|
||||
" },\n",
|
||||
" outputs= {\n",
|
||||
" \"quant_model\": Output(type=\"uri_file\", path=quant_dlc_path, mode=\"rw_mount\")\n",
|
||||
" },\n",
|
||||
"\n",
|
||||
" # The source folder of the component\n",
|
||||
" code=scripts_dir,\n",
|
||||
" command=\"\"\"python3 quantize.py \\\n",
|
||||
" --data ${{inputs.data}} \\\n",
|
||||
" --list_file ${{inputs.list_file}} \\\n",
|
||||
" --model ${{inputs.model}} \\\n",
|
||||
" --output ${{outputs.quant_model}} \\\n",
|
||||
" \"\"\",\n",
|
||||
" environment=f\"{pipeline_job_env.name}:{pipeline_job_env.version}\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 54,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def info_component(output_path):\n",
|
||||
" return command(\n",
|
||||
" name=\"model_info\",\n",
|
||||
" display_name=\"Get model metrics\",\n",
|
||||
" description=\"Runs snpe-dlc-info on the input .dlc model\",\n",
|
||||
" inputs={\n",
|
||||
" \"model\": Input(type=\"uri_folder\")\n",
|
||||
" },\n",
|
||||
" outputs= {\n",
|
||||
" \"info\": Output(type=\"uri_file\", path=output_path, mode=\"rw_mount\")\n",
|
||||
" },\n",
|
||||
"\n",
|
||||
" # The source folder of the component\n",
|
||||
" code=scripts_dir,\n",
|
||||
" command=\"\"\"python3 dlc_info.py \\\n",
|
||||
" --model ${{inputs.model}} \\\n",
|
||||
" --output ${{outputs.info}} \\\n",
|
||||
" \"\"\",\n",
|
||||
" environment=f\"{pipeline_job_env.name}:{pipeline_job_env.version}\",\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# the dsl decorator tells the sdk that we are defining an Azure ML pipeline\n",
|
||||
"from azure.ai.ml import dsl, Input, Output\n",
|
||||
"\n",
|
||||
"@dsl.pipeline(\n",
|
||||
" compute=snpe_cluster,\n",
|
||||
" description=\"Quantization pipeline\",\n",
|
||||
")\n",
|
||||
"def quantization_pipeline(\n",
|
||||
" pipeline_job_data_input,\n",
|
||||
" model_input\n",
|
||||
"):\n",
|
||||
" # using data_prep_function like a python call with its own inputs\n",
|
||||
" data_prep_job = data_prep_component(\n",
|
||||
" data=pipeline_job_data_input\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # convert onnx to dlc\n",
|
||||
" convert_job = convert_component(\n",
|
||||
" model=model_input\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # get the dlc info on the converted model\n",
|
||||
" info_job = info_component(dlc_info_path)(\n",
|
||||
" model=convert_job.outputs.dlc\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # quantize the dlc model\n",
|
||||
" quant_job = quant_component(\n",
|
||||
" data=data_prep_job.outputs.quant_data,\n",
|
||||
" list_file='input_list.txt',\n",
|
||||
" model=convert_job.outputs.dlc\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # get the dlc info on quantized model\n",
|
||||
" info_job = info_component(quant_dlc_info_path)(\n",
|
||||
" model=quant_job.outputs.quant_model\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # a pipeline returns a dictionary of outputs\n",
|
||||
" # keys will code for the pipeline output identifier\n",
|
||||
" return {\n",
|
||||
" \"pipeline_job_model\": convert_job.outputs.dlc,\n",
|
||||
" \"pipeline_job_quant_model\": quant_job.outputs.quant_model,\n",
|
||||
" \"pipeline_job_info\": info_job.outputs.info\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 60,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Let's instantiate the pipeline with the parameters of our choice\n",
|
||||
"pipeline = quantization_pipeline(\n",
|
||||
" pipeline_job_data_input=Input(type=\"uri_file\", path=face_data.path),\n",
|
||||
" model_input=Input(type=\"uri_file\", path=model_path)\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# submit the pipeline job\n",
|
||||
"pipeline_job = ml_client.jobs.create_or_update(\n",
|
||||
" pipeline,\n",
|
||||
" # Project's name\n",
|
||||
" experiment_name=\"quantization_test_run\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"True"
|
||||
]
|
||||
},
|
||||
"execution_count": 57,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import webbrowser\n",
|
||||
"# open the pipeline in web browser\n",
|
||||
"webbrowser.open(pipeline_job.services[\"Studio\"].endpoint)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ml_client.jobs.download(pipeline_job.name, output_name='pipeline_job_info')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 59,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"name: strong_pasta_wgv176q8tw\n",
|
||||
"display_name: quantization_pipeline\n",
|
||||
"description: Quantization pipeline\n",
|
||||
"type: pipeline\n",
|
||||
"inputs:\n",
|
||||
" pipeline_job_data_input:\n",
|
||||
" mode: ro_mount\n",
|
||||
" type: uri_file\n",
|
||||
" path: azureml:https://nasfacemodels.blob.core.windows.net/downloads/099000.zip\n",
|
||||
" model_input:\n",
|
||||
" mode: ro_mount\n",
|
||||
" type: uri_file\n",
|
||||
" path: azureml://datastores/nassnpe205test/paths/Deci2/deci_optimized_2.onnx\n",
|
||||
"outputs:\n",
|
||||
" pipeline_job_model:\n",
|
||||
" mode: rw_mount\n",
|
||||
" type: uri_file\n",
|
||||
" path: azureml://datastores/nassnpe205test/paths/Deci2/model.dlc\n",
|
||||
" pipeline_job_quant_model:\n",
|
||||
" mode: rw_mount\n",
|
||||
" type: uri_file\n",
|
||||
" path: azureml://datastores/nassnpe205test/paths/Deci2/model.quant.dlc\n",
|
||||
" pipeline_job_info:\n",
|
||||
" mode: rw_mount\n",
|
||||
" type: uri_file\n",
|
||||
" path: azureml://datastores/nassnpe205test/paths/Deci2/model.quant.info.txt\n",
|
||||
"jobs:\n",
|
||||
" data_prep_job:\n",
|
||||
" type: command\n",
|
||||
" inputs:\n",
|
||||
" data:\n",
|
||||
" path: ${{parent.inputs.pipeline_job_data_input}}\n",
|
||||
" outputs:\n",
|
||||
" quant_data:\n",
|
||||
" mode: rw_mount\n",
|
||||
" type: uri_folder\n",
|
||||
" component: azureml:azureml_anonymous:27028d4f-0db8-49a6-a997-74422e5a037b\n",
|
||||
" convert_job:\n",
|
||||
" type: command\n",
|
||||
" inputs:\n",
|
||||
" model:\n",
|
||||
" path: ${{parent.inputs.model_input}}\n",
|
||||
" outputs:\n",
|
||||
" dlc: ${{parent.outputs.pipeline_job_model}}\n",
|
||||
" component: azureml:azureml_anonymous:d8fc98af-0f29-4b27-98ef-3993a109b122\n",
|
||||
" info_job_1:\n",
|
||||
" type: command\n",
|
||||
" inputs:\n",
|
||||
" model:\n",
|
||||
" path: ${{parent.jobs.convert_job.outputs.dlc}}\n",
|
||||
" outputs:\n",
|
||||
" info:\n",
|
||||
" mode: rw_mount\n",
|
||||
" type: uri_file\n",
|
||||
" path: azureml://datastores/nassnpe205test/paths/Deci2/model.info.txt\n",
|
||||
" component: azureml:azureml_anonymous:d0525a94-b93d-4301-8cc3-1ed669cf4108\n",
|
||||
" quant_job:\n",
|
||||
" type: command\n",
|
||||
" inputs:\n",
|
||||
" list_file: input_list.txt\n",
|
||||
" data:\n",
|
||||
" path: ${{parent.jobs.data_prep_job.outputs.quant_data}}\n",
|
||||
" model:\n",
|
||||
" path: ${{parent.jobs.convert_job.outputs.dlc}}\n",
|
||||
" outputs:\n",
|
||||
" quant_model: ${{parent.outputs.pipeline_job_quant_model}}\n",
|
||||
" component: azureml:azureml_anonymous:04f22241-0aea-45a9-949a-3204e076edc2\n",
|
||||
" info_job:\n",
|
||||
" type: command\n",
|
||||
" inputs:\n",
|
||||
" model:\n",
|
||||
" path: ${{parent.jobs.quant_job.outputs.quant_model}}\n",
|
||||
" outputs:\n",
|
||||
" info: ${{parent.outputs.pipeline_job_info}}\n",
|
||||
" component: azureml:azureml_anonymous:d0525a94-b93d-4301-8cc3-1ed669cf4108\n",
|
||||
"services:\n",
|
||||
" Tracking:\n",
|
||||
" endpoint: azureml://westus2.api.azureml.ms/mlflow/v1.0/subscriptions/c8b7f913-60fb-4759-a310-fc5630e56f99/resourceGroups/snpe-aml-rg/providers/Microsoft.MachineLearningServices/workspaces/snpe-aml-workspace?\n",
|
||||
" job_service_type: Tracking\n",
|
||||
" Studio:\n",
|
||||
" endpoint: https://ml.azure.com/runs/strong_pasta_wgv176q8tw?wsid=/subscriptions/c8b7f913-60fb-4759-a310-fc5630e56f99/resourcegroups/snpe-aml-rg/workspaces/snpe-aml-workspace&tid=72f988bf-86f1-41af-91ab-2d7cd011db47\n",
|
||||
" job_service_type: Studio\n",
|
||||
"compute: azureml:snpe-compute\n",
|
||||
"status: Preparing\n",
|
||||
"creation_context:\n",
|
||||
" created_at: '2023-03-01T01:23:51.345924+00:00'\n",
|
||||
" created_by: Chris Lovett\n",
|
||||
" created_by_type: User\n",
|
||||
"experiment_name: quantization_test_run\n",
|
||||
"properties:\n",
|
||||
" mlflow.source.git.repoURL: git@ssh.dev.azure.com:v3/msresearch/archai/image_segmentation\n",
|
||||
" mlflow.source.git.branch: main\n",
|
||||
" mlflow.source.git.commit: 6819790b2144d222d3f24870e213728eeebb11e9\n",
|
||||
" azureml.git.dirty: 'True'\n",
|
||||
" azureml.DevPlatv2: 'true'\n",
|
||||
" azureml.runsource: azureml.PipelineRun\n",
|
||||
" runSource: MFE\n",
|
||||
" runType: HTTP\n",
|
||||
" azureml.parameters: '{}'\n",
|
||||
" azureml.continue_on_step_failure: 'False'\n",
|
||||
" azureml.continue_on_failed_optional_input: 'True'\n",
|
||||
" azureml.defaultComputeName: snpe-compute\n",
|
||||
" azureml.defaultDataStoreName: workspaceblobstore\n",
|
||||
" azureml.pipelineComponent: pipelinerun\n",
|
||||
"id: azureml:/subscriptions/c8b7f913-60fb-4759-a310-fc5630e56f99/resourceGroups/snpe-aml-rg/providers/Microsoft.MachineLearningServices/workspaces/snpe-aml-workspace/jobs/strong_pasta_wgv176q8tw\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(pipeline_job)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "archai",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
},
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "799abcba35f70097d02fca042963180a03ec3451fe1b7671ac5d22383cd0232c"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
|
@ -1 +0,0 @@
|
|||
azure-ai-ml==1.5.0a20230215003
|
|
@ -1,87 +0,0 @@
|
|||
from azure.iot.device import IoTHubDeviceClient, MethodResponse
|
||||
from utils import Adb, spawn
|
||||
import json
|
||||
import platform
|
||||
import time
|
||||
from threading import Thread
|
||||
|
||||
|
||||
class SnpeClient:
|
||||
def __init__(self, device, iot_hub_name, iot_resource_group):
|
||||
self.device = device
|
||||
self.iot_hub_name = iot_hub_name
|
||||
self.iot_resource_group = iot_resource_group
|
||||
self.adb = Adb()
|
||||
self.connected = False
|
||||
|
||||
def connect(self):
|
||||
if platform.system() == 'Windows':
|
||||
az = 'az.cmd'
|
||||
else:
|
||||
az = 'az'
|
||||
|
||||
rc, stdout, stderr = spawn([az, 'iot', 'hub', 'device-identity', 'connection-string', 'show',
|
||||
'--device-id', self.device, '--hub-name', self.iot_hub_name, '--resource-group', self.iot_resource_group])
|
||||
|
||||
if rc != 0:
|
||||
print(stderr)
|
||||
self.connected = False
|
||||
|
||||
config = json.loads(stdout)
|
||||
self.connection_string = config['connectionString']
|
||||
|
||||
# Instantiate the client
|
||||
self.client = IoTHubDeviceClient.create_from_connection_string(self.connection_string)
|
||||
|
||||
try:
|
||||
# Attach the handler to the client
|
||||
self.client.on_method_request_received = self.method_request_handler
|
||||
self.connected = True
|
||||
return True
|
||||
except:
|
||||
# In the event of failure, clean up
|
||||
self.client.shutdown()
|
||||
self.connected = False
|
||||
return False
|
||||
|
||||
def start_thread(self):
|
||||
self.stdin_thread = Thread(target=self.run, args=())
|
||||
self.stdin_thread.daemon = True
|
||||
self.stdin_thread.start()
|
||||
|
||||
def run(self):
|
||||
print(f"running thread for device {self.device}...")
|
||||
while self.connected:
|
||||
time.sleep(1)
|
||||
|
||||
# Define the handler for method requests
|
||||
def method_request_handler(self, method_request):
|
||||
if method_request.name == "ls":
|
||||
# run an adb command on the device.
|
||||
path = '/'
|
||||
if 'path' in method_request.payload:
|
||||
path = method_request.payload['path']
|
||||
print(f"device {self.device} is running ls {path}")
|
||||
result = self.adb.ls(self.device, path)
|
||||
|
||||
# Create a method response indicating the method request was resolved
|
||||
resp_status = 200
|
||||
resp_payload = {"Response": result}
|
||||
method_response = MethodResponse(method_request.request_id, resp_status, resp_payload)
|
||||
|
||||
elif method_request.name == "shutdown":
|
||||
print(f"device {self.device} is shutting down...")
|
||||
self.connected = False
|
||||
# Create a method response indicating the method request was resolved
|
||||
resp_status = 200
|
||||
resp_payload = {"Response": "Shutting down device " + self.device}
|
||||
method_response = MethodResponse(method_request.request_id, resp_status, resp_payload)
|
||||
|
||||
else:
|
||||
# Create a method response indicating the method request was for an unknown method
|
||||
resp_status = 404
|
||||
resp_payload = {"Response": "Unknown method"}
|
||||
method_response = MethodResponse(method_request.request_id, resp_status, resp_payload)
|
||||
|
||||
# Send the method response
|
||||
self.client.send_method_response(method_response)
|
|
@ -1,107 +0,0 @@
|
|||
import os
|
||||
import sys
|
||||
import mlflow
|
||||
import argparse
|
||||
from onnxruntime import InferenceSession
|
||||
from utils import spawn
|
||||
|
||||
|
||||
def _get_input_layout(shape):
|
||||
# snpe-onnx-to-dlc supported input layouts are:
|
||||
# NCHW, NHWC, NFC, NCF, NTF, TNF, NF, NC, F, NONTRIVIAL
|
||||
# N = Batch, C = Channels, H = Height, W = Width, F = Feature, T = Time
|
||||
if shape[0] == 3:
|
||||
# then the RGB channel is first, so we are NCHW
|
||||
return 'NCHW'
|
||||
elif shape[-1] == 3:
|
||||
return 'NHWC'
|
||||
else:
|
||||
raise Exception(f"Cannot figure out input layout from shape: {shape}")
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function of the script."""
|
||||
|
||||
# input and output arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, help="path to onnx file to convert to .dlc")
|
||||
parser.add_argument("--output", type=str, help="path to resulting converted model")
|
||||
args = parser.parse_args()
|
||||
|
||||
model = args.model
|
||||
output_path = args.output
|
||||
output_dir = os.path.dirname(output_path)
|
||||
|
||||
print(" ".join(f"{k}={v}" for k, v in vars(args).items()))
|
||||
|
||||
print("input model:", model)
|
||||
print("output:", output_path)
|
||||
|
||||
if not model or not os.path.exists(model):
|
||||
raise Exception(f'### Error: no file found at: {model}')
|
||||
|
||||
if output_dir == '':
|
||||
output_dir = '.'
|
||||
else:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# Start Logging
|
||||
mlflow.start_run()
|
||||
|
||||
print(f"Found mlflow tracking Uri: {mlflow.tracking.get_tracking_uri()}")
|
||||
|
||||
sess = InferenceSession(model, providers=['CPUExecutionProvider'])
|
||||
if len(sess._sess.inputs_meta) > 1:
|
||||
raise Exception("Cannot handle models with more than one input")
|
||||
if len(sess._sess.outputs_meta) > 1:
|
||||
raise Exception("Cannot handle models more than one output")
|
||||
|
||||
input_meta = sess._sess.inputs_meta[0]
|
||||
output_meta = sess._sess.outputs_meta[0]
|
||||
|
||||
print(f"==> Converting model {model} to .dlc...")
|
||||
|
||||
shape = input_meta.shape
|
||||
if len(shape) == 4:
|
||||
shape = shape[1:] # trim off batch dimension
|
||||
layout = _get_input_layout(shape)
|
||||
input_shape = ",".join([str(i) for i in input_meta.shape])
|
||||
output_dlc = output_path
|
||||
# snpe-onnx-to-dlc changes the model input to NHWC.
|
||||
dlc_shape = shape if layout == 'NHWC' else [shape[1], shape[2], shape[0]]
|
||||
|
||||
mlflow.set_tag("input_shape", dlc_shape)
|
||||
|
||||
command = ["snpe-onnx-to-dlc", "-i", model,
|
||||
"-d", input_meta.name, input_shape,
|
||||
"--input_layout", input_meta.name, layout,
|
||||
"--out_node", output_meta.name,
|
||||
"-o", output_dlc]
|
||||
|
||||
print(" ".join(command))
|
||||
|
||||
rc, stdout, stderr = spawn(command)
|
||||
|
||||
print("shape: ", dlc_shape)
|
||||
|
||||
print("stdout:")
|
||||
print("-------")
|
||||
print(stdout)
|
||||
|
||||
print("")
|
||||
print("stderr:")
|
||||
print("-------")
|
||||
print(stderr)
|
||||
|
||||
if "INFO_CONVERSION_SUCCESS" in stderr:
|
||||
print("==> Conversion successful!")
|
||||
else:
|
||||
print("==> Conversion failed!")
|
||||
sys.exit(1)
|
||||
|
||||
# Stop Logging
|
||||
mlflow.end_run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,111 +0,0 @@
|
|||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
import argparse
|
||||
import cv2
|
||||
import numpy as np
|
||||
import glob
|
||||
import os
|
||||
import sys
|
||||
import tqdm
|
||||
from shutil import rmtree
|
||||
|
||||
|
||||
DEVICE_WORKING_DIR = "/data/local/tmp"
|
||||
|
||||
|
||||
class DataGenerator():
|
||||
def __init__(self, root, img_size, subset='quant', count=1000, transpose=None):
|
||||
self.img_size = img_size
|
||||
self.root = root
|
||||
self.subset = subset
|
||||
self.transpose = transpose
|
||||
all_seg_files = sorted(glob.glob(os.path.join(self.root, '*_seg.png')))
|
||||
if len(all_seg_files) == 0:
|
||||
print("### no *_seg.png files found in {}".format(self.root))
|
||||
sys.exit(1)
|
||||
# use first 10000 images for quantization and last 10000 images for test
|
||||
assert subset in ['quant', 'test']
|
||||
if subset == 'quant':
|
||||
self.seg_files = all_seg_files[0:1000]
|
||||
elif subset == 'test':
|
||||
self.seg_files = all_seg_files[len(all_seg_files) - count:]
|
||||
self.img_files = [s.replace("_seg.png", ".png") for s in self.seg_files]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.img_files)
|
||||
|
||||
def __call__(self):
|
||||
num_imgs = len(self.img_files)
|
||||
assert num_imgs > 0
|
||||
indices = np.arange(num_imgs)
|
||||
for idx in indices:
|
||||
img_file = self.img_files[idx]
|
||||
img = cv2.imread(img_file)[..., ::-1] # BGR to RGB
|
||||
img = cv2.resize(img, self.img_size, interpolation=cv2.INTER_LINEAR)
|
||||
if self.transpose:
|
||||
img = img.transpose(self.transpose)
|
||||
yield os.path.basename(img_file), (img / 255).astype(np.float32)
|
||||
|
||||
|
||||
def create_dataset(src_root, dst_root, subset, shape, count, trans=None):
|
||||
print(f"Creating {subset} dataset of {count} images with input shape {shape}...")
|
||||
|
||||
image_size = (shape[0], shape[1])
|
||||
device_working_dir = DEVICE_WORKING_DIR
|
||||
os.makedirs(dst_root, exist_ok=True)
|
||||
|
||||
data_gen = DataGenerator(src_root, image_size, subset, count, trans)
|
||||
|
||||
file_list = []
|
||||
with tqdm.tqdm(total=len(data_gen)) as pbar:
|
||||
for fname, img in data_gen():
|
||||
filename = fname.replace('.png', '.bin')
|
||||
path = os.path.join(dst_root, filename)
|
||||
file_list.append(filename)
|
||||
img.tofile(path)
|
||||
pbar.update(1)
|
||||
|
||||
with open(os.path.join(dst_root, 'input_list.txt'), 'w') as f:
|
||||
for fname in file_list:
|
||||
f.write(fname)
|
||||
f.write('\n')
|
||||
|
||||
with open(os.path.join(dst_root, 'input_list_for_device.txt'), 'w') as f:
|
||||
for fname in file_list:
|
||||
device_path = device_working_dir + '/data/test/' + os.path.basename(fname)
|
||||
f.write(device_path)
|
||||
f.write('\n')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Create the quant and test datasets')
|
||||
parser.add_argument('--input', help='Location of the original input images ' +
|
||||
'(default INPUT_DATASET environment variable')
|
||||
parser.add_argument('--count', '-c', type=int, help='Number of images in the test dataset folder ' +
|
||||
'(default 1000)', default=1000)
|
||||
parser.add_argument('--dim', '-d', type=int, help='New dimension for the images ' +
|
||||
'(assumes square dimensions, default 256)', default=256)
|
||||
parser.add_argument('--transpose', '-t', help="Apply image transpose of '(2, 0 1)'", action="store_true")
|
||||
args = parser.parse_args()
|
||||
|
||||
dataset = args.input
|
||||
if not dataset:
|
||||
dataset = os.getenv("INPUT_DATASET")
|
||||
if not dataset:
|
||||
print("please provide --input or set your INPUT_DATASET environment variable")
|
||||
sys.exit(1)
|
||||
|
||||
count = args.count
|
||||
dim = args.dim
|
||||
transpose = args.transpose
|
||||
if transpose:
|
||||
transpose = (2, 0, 1)
|
||||
else:
|
||||
transpose = None
|
||||
|
||||
dst_root = 'data/quant'
|
||||
if os.path.isdir(dst_root):
|
||||
rmtree(dst_root)
|
||||
|
||||
create_dataset(dataset, dst_root, 'quant', (dim, dim), count, transpose)
|
||||
create_dataset(dataset, dst_root, 'test', (dim, dim), count, transpose)
|
|
@ -1,51 +0,0 @@
|
|||
import os
|
||||
import argparse
|
||||
import logging
|
||||
import mlflow
|
||||
import zipfile
|
||||
from create_data import create_dataset
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function of the script."""
|
||||
|
||||
# input and output arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--data", type=str, help="path to input data (zip file)")
|
||||
parser.add_argument("--output", type=str, help="path to resulting quantization data")
|
||||
args = parser.parse_args()
|
||||
|
||||
input_path = args.data
|
||||
data_dir = 'data'
|
||||
output_dir = args.output
|
||||
|
||||
print(" ".join(f"{k}={v}" for k, v in vars(args).items()))
|
||||
|
||||
print("input data:", input_path)
|
||||
print("input output:", output_dir)
|
||||
|
||||
if not input_path or not os.path.exists(input_path):
|
||||
raise Exception(f'### Error: no .zip file found in the {input_path} folder')
|
||||
|
||||
os.makedirs(data_dir, exist_ok=True)
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# Start Logging
|
||||
mlflow.start_run()
|
||||
|
||||
print('unzipping the data...')
|
||||
with zipfile.ZipFile(input_path, 'r') as zip_ref:
|
||||
zip_ref.extractall(data_dir)
|
||||
|
||||
print('Converting the .png images to SNPE quantization .bin files...')
|
||||
create_dataset(data_dir, output_dir, 'quant', (256, 256), 1000)
|
||||
|
||||
for name in os.listdir(output_dir):
|
||||
print(name)
|
||||
|
||||
# Stop Logging
|
||||
mlflow.end_run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,82 +0,0 @@
|
|||
# This script connects local adb devices to Azure IOT hub and
|
||||
# implements some method calls to control the device.
|
||||
# This assumes you have the Android ADB tool installed, and
|
||||
# the SNPE SDK in an SNPE_ROOT, and the Olive2 SDK.
|
||||
|
||||
from utils import Adb, spawn
|
||||
import json
|
||||
import platform
|
||||
import time
|
||||
from client import SnpeClient
|
||||
|
||||
|
||||
class DeviceManager:
|
||||
def __init__(self):
|
||||
config = json.load(open(".azureml/config.json"))
|
||||
self.subscription = config['subscription_id']
|
||||
self.iot_resource_group = config['iot_resource_group']
|
||||
self.iot_hub_name = config['iot_hub_name']
|
||||
self.location = config['location']
|
||||
|
||||
def register(self):
|
||||
|
||||
if platform.system() == 'Windows':
|
||||
az = 'az.cmd'
|
||||
else:
|
||||
az = 'az'
|
||||
|
||||
|
||||
rc, stdout, stderr = spawn([az, 'iot', 'hub', 'connection-string', 'show',
|
||||
'--hub-name', self.iot_hub_name, '--resource-group', self.iot_resource_group])
|
||||
|
||||
if rc != 0:
|
||||
raise Exception(stderr)
|
||||
|
||||
config = json.loads(stdout)
|
||||
iot_hub_connection_string = config['connectionString']
|
||||
|
||||
adb = Adb()
|
||||
devices = adb.get_devices()
|
||||
|
||||
for device in devices:
|
||||
print(f"Checking Device Twin for android device {device}...")
|
||||
rc, stdout, stderr = spawn([az, 'iot', 'hub', 'device-identity', 'show',
|
||||
'--device-id', device,
|
||||
'--hub-name', self.iot_hub_name, '--resource-group', self.iot_resource_group])
|
||||
|
||||
if rc != 0:
|
||||
if 'DeviceNotFound' in stderr:
|
||||
|
||||
print(f"Creating Device Twin for android device {device}...")
|
||||
|
||||
rc, stdout, stderr = spawn([az, 'iot', 'hub', 'device-identity', 'create',
|
||||
'--device-id', device,
|
||||
'--hub-name', self.iot_hub_name, '--resource-group', self.iot_resource_group])
|
||||
|
||||
if rc != 0:
|
||||
raise Exception(stderr)
|
||||
|
||||
else:
|
||||
raise Exception(stderr)
|
||||
|
||||
return devices
|
||||
|
||||
|
||||
|
||||
# Run the handler for each device attached to this local machine.
|
||||
mgr = DeviceManager()
|
||||
devices = mgr.register()
|
||||
clients = []
|
||||
for device in devices:
|
||||
client = SnpeClient(device, mgr.iot_hub_name, mgr.iot_resource_group)
|
||||
if client.connect():
|
||||
client.start_thread()
|
||||
clients.append(client)
|
||||
|
||||
while len(clients):
|
||||
for c in list(clients):
|
||||
if not c.connected:
|
||||
clients.remove(c)
|
||||
time.sleep(1)
|
||||
|
||||
print("all clients have terminated")
|
|
@ -1,74 +0,0 @@
|
|||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import mlflow
|
||||
from utils import spawn
|
||||
|
||||
def macs_to_float(macs):
|
||||
if macs.endswith('B'):
|
||||
return float(macs[:-1]) * 1e9
|
||||
if macs.endswith('M'):
|
||||
return float(macs[:-1]) * 1e6
|
||||
elif macs.endswith('K'):
|
||||
return float(macs[:-1]) * 1e3
|
||||
else:
|
||||
return float(macs)
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
# input and output arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, help="path to dlc model we need to get info about")
|
||||
parser.add_argument("--output", type=str, help="the output text file to write to")
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = args.model
|
||||
output_path = args.output
|
||||
|
||||
print("input model:", model_path)
|
||||
print("output path:", output_path)
|
||||
print("tracking url:", mlflow.tracking.get_tracking_uri())
|
||||
|
||||
if not model_path or not os.path.exists(model_path):
|
||||
raise Exception(f'### Error: no input model found at: {model_path}')
|
||||
|
||||
# Start Logging
|
||||
mlflow.start_run()
|
||||
|
||||
rc, stdout, stderr = spawn(['snpe-dlc-info', '--input_dlc', model_path])
|
||||
|
||||
print("stdout:")
|
||||
print("-------")
|
||||
print(stdout)
|
||||
|
||||
print("")
|
||||
print("stderr:")
|
||||
print("-------")
|
||||
print(stderr)
|
||||
|
||||
with open(output_path, 'w') as f:
|
||||
f.write(stdout)
|
||||
|
||||
params_prefix = 'Total parameters'
|
||||
macs_prefix = 'Total MACs per inference'
|
||||
memory_prefix = 'Est. Steady-State Memory Needed to Run:'
|
||||
|
||||
# Parse stdout to get the info we want to log as metrics
|
||||
for line in stdout.split('\n'):
|
||||
if line.startswith(params_prefix):
|
||||
params = line.split(':')[1].split('(')[0].strip()
|
||||
mlflow.log_metric(params_prefix, float(params))
|
||||
elif line.startswith(macs_prefix):
|
||||
macs = line.split(':')[1].split('(')[0].strip()
|
||||
mlflow.log_metric(macs_prefix, macs_to_float(macs))
|
||||
elif line.startswith(memory_prefix):
|
||||
mem = line.split(':')[1].strip().split(' ')[0].strip()
|
||||
mlflow.log_metric('Estimated Memory Needed to Run', float(mem))
|
||||
|
||||
# Stop Logging
|
||||
mlflow.end_run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,80 +0,0 @@
|
|||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import mlflow
|
||||
from utils import spawn
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function of the script."""
|
||||
|
||||
# input and output arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--data", type=str, help="path to quantization dataset folder")
|
||||
parser.add_argument("--model", type=str, help="path to model we need to quantize")
|
||||
parser.add_argument("--list_file", type=str, help="the name of the input_list.txt file")
|
||||
parser.add_argument("--output", type=str, help="place to write the quantized model")
|
||||
args = parser.parse_args()
|
||||
|
||||
input_path = args.data
|
||||
list_file = args.list_file
|
||||
model_path = args.model
|
||||
output_path = args.output
|
||||
output_dir = os.path.dirname(output_path)
|
||||
if output_dir == '':
|
||||
output_dir = '.'
|
||||
|
||||
print("input data:", input_path)
|
||||
print("input model:", model_path)
|
||||
print("output model:", output_path)
|
||||
|
||||
if not input_path or not os.path.exists(input_path):
|
||||
raise Exception(f'### Error: no input data found at: {input_path}')
|
||||
|
||||
if not input_path or not os.path.exists(model_path):
|
||||
raise Exception(f'### Error: no input model found at: {model_path}')
|
||||
|
||||
if not output_path or not os.path.exists(output_dir):
|
||||
raise Exception(f'### Error: no output path found at: {output_dir}')
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# Start Logging
|
||||
mlflow.start_run()
|
||||
input_list = os.path.join(input_path, list_file)
|
||||
|
||||
# snpe-dlc-quant needs full paths in the input list.
|
||||
with open(input_list, 'r') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
lines = [os.path.join(input_path, line) for line in lines]
|
||||
input_list = 'input_list.txt' # not in the read-only input_path folder.
|
||||
with open(input_list, 'w') as f:
|
||||
f.writelines(lines)
|
||||
|
||||
rc, stdout, stderr = spawn(['snpe-dlc-quant', '--input_dlc', model_path,
|
||||
'--input_list', input_list,
|
||||
'--output_dlc', output_path,
|
||||
'--use_enhanced_quantizer'])
|
||||
|
||||
print("stdout:")
|
||||
print("-------")
|
||||
print(stdout)
|
||||
|
||||
print("")
|
||||
print("stderr:")
|
||||
print("-------")
|
||||
print(stderr)
|
||||
|
||||
if "[INFO] Saved quantized dlc" in stderr:
|
||||
print("==> Quantization successful!")
|
||||
else:
|
||||
print("==> Quantization failed!")
|
||||
sys.exit(1)
|
||||
|
||||
# Stop Logging
|
||||
mlflow.end_run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,35 +0,0 @@
|
|||
import subprocess
|
||||
|
||||
|
||||
def spawn(cmd, env=None, cwd=None, check=False):
|
||||
out = subprocess.run(cmd, env=env, cwd=cwd, check=check,
|
||||
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
returncode = out.returncode
|
||||
stdout = out.stdout.decode("utf-8")
|
||||
stderr = out.stderr.decode("utf-8")
|
||||
return returncode, stdout, stderr
|
||||
|
||||
|
||||
class Adb:
|
||||
def __init__(self):
|
||||
self.devices = []
|
||||
|
||||
def get_devices(self):
|
||||
rc, stdout, stderr = spawn(["adb", "devices"])
|
||||
if rc != 0:
|
||||
raise Exception("Error: {}".format(stderr))
|
||||
|
||||
result = []
|
||||
for line in stdout.splitlines():
|
||||
if not line.startswith("List of devices attached") and line:
|
||||
result.append(line.split('\t')[0])
|
||||
|
||||
self.devices = result
|
||||
return result
|
||||
|
||||
def ls(self, device, path):
|
||||
rc, stdout, stderr = spawn(["adb", "-s", device, "shell", "ls", path])
|
||||
if rc != 0:
|
||||
raise Exception("Error: {}".format(stderr))
|
||||
|
||||
return stdout.splitlines()
|
Загрузка…
Ссылка в новой задаче