Refactored hog + small neural network classification pipeline.

This commit is contained in:
Debadeepta Dey 2021-03-05 10:25:53 -08:00 коммит произвёл Gustavo Rosa
Родитель e5ec907259
Коммит 8009911fb4
7 изменённых файлов: 55 добавлений и 66 удалений

8
.vscode/launch.json поставляемый
Просмотреть файл

@ -418,6 +418,14 @@
"--aug", "fa_reduced_cifar10"
]
},
{
"name": "Train Visual Features FF Net",
"type": "python",
"request": "launch",
"program": "${cwd}/scripts/misc/train_visual_features_ffnet.py",
"console": "integratedTerminal",
"args": []
},
{
"name": "Analysis Aggregate",
"type": "python",

Просмотреть файл

@ -1,55 +0,0 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from copy import deepcopy
from typing import Optional
import importlib
import sys
import string
import os
from overrides import overrides
import torch
from torch import nn
from overrides import overrides, EnforceOverrides
from archai.common.trainer import Trainer
from archai.common.config import Config
from archai.common.common import logger
from archai.datasets import data
from archai.nas.model_desc import ModelDesc
from archai.nas.model_desc_builder import ModelDescBuilder
from archai.nas import nas_utils
from archai.common import ml_utils, utils
from archai.common.metrics import EpochMetrics, Metrics
from archai.nas.model import Model
from archai.common.checkpoint import CheckPoint
from archai.nas.evaluater import Evaluater
from archai.algos.proxynas.freeze_trainer import FreezeTrainer
from archai.algos.proxynas.conditional_trainer import ConditionalTrainer
from nats_bench import create
from archai.algos.natsbench.lib.models import get_cell_based_tiny_net
class LinearEvaluater(Evaluater):
@overrides
def create_model(self, conf_eval:Config, model_desc_builder:ModelDescBuilder,
final_desc_filename=None, full_desc_filename=None)->nn.Module:
# region conf vars
dataset_name = conf_eval['loader']['dataset']['name']
# if explicitly passed in then don't get from conf
if not final_desc_filename:
final_desc_filename = conf_eval['final_desc_filename']
dataroot = utils.full_path(conf_eval['loader']['dataset']['dataroot'])
# endregion
# create linear model
# problem: what is the input size of the image features?
return self._model_from_natsbench(arch_index, dataset_name, natsbench_location)

Просмотреть файл

@ -1,17 +1,22 @@
import torch
from torch.functional import Tensor
import torch.nn as nn
from skimage import feature
import matplotlib.pyplot as plt
class VisualFeaturesWithLinearNet(nn.Module):
class VisualFeaturesWithFFNet(nn.Module):
def __init__(self, feature_len:int, n_classes:int):
super(VisualFeaturesWithLinearNet, self).__init__()
super(VisualFeaturesWithFFNet, self).__init__()
self.feature_len = feature_len
self.fc = nn.Linear(feature_len, n_classes)
self.net = nn.Sequential(nn.Linear(feature_len, 2048),
nn.ReLU(),
nn.Linear(2048, 2048),
nn.ReLU(),
nn.Linear(2048, n_classes))
#self.fc = nn.Linear(feature_len, n_classes)
def _compute_features(self, x:Tensor)->Tensor:
@ -41,4 +46,4 @@ class VisualFeaturesWithLinearNet(nn.Module):
def forward(self, x):
feats = self._compute_features(x)
return self.fc(feats.float())
return self.net(feats.float())

Просмотреть файл

@ -1,5 +1,12 @@
__include__: 'darts.yaml' # just use darts defaults
dataset:
name: 'ImageNet16-120'
n_classes: 120
channels: 3 # number of channels in image
max_batches: -1 # if >= 0 then only these many batches are generated (useful for debugging)
storage_name: 'imagenet16' # name of folder or tar file to copy from cloud storage
common:
experiment_name: 'VisualFeaturesWithLinearNet'

Просмотреть файл

@ -2,7 +2,7 @@
# Licensed under the MIT license.
import torch
from archai.networks.visual_features_with_linear_net import VisualFeaturesWithLinearNet
from archai.networks.visual_features_with_ff_net import VisualFeaturesWithFFNet
from archai.common.trainer import Trainer
from archai.common.config import Config
from archai.common.common import common_init
@ -13,7 +13,7 @@ def train_test(conf_eval:Config):
conf_trainer = conf_eval['trainer']
# create model
Net = VisualFeaturesWithLinearNet
Net = VisualFeaturesWithFFNet
feature_len = 324
n_classes = 10
model = Net(feature_len, n_classes).to(torch.device('cuda', 0))
@ -27,7 +27,7 @@ def train_test(conf_eval:Config):
if __name__ == '__main__':
conf = common_init(config_filepath='confs/algos/visual_features_linearnet.yaml')
conf = common_init(config_filepath='confs/algos/visual_features_ffnet.yaml')
conf_eval = conf['nas']['eval']
train_test(conf_eval)

Просмотреть файл

@ -32,6 +32,8 @@ natsbench_cifar10:
'ft_fb256_ftlr0.1_fte5_ct256_ftt0.6_c9',
'ft_fb256_ftlr0.1_fte10_ct256_ftt0.6_c9']
zero_cost: ['zero_cost_nb201_cifar10']
shortreg: ['nb_reg_b1024_e01',
'nb_reg_b1024_e02',
'nb_reg_b1024_e04',
@ -67,6 +69,8 @@ natsbench_cifar100:
'nb_c100_reg_b2048_e20',
'nb_c100_reg_b2048_e30']
zero_cost: ['zero_cost_nb201_cifar100']
natsbench_imagenet16-120:
freezetrain: [ft_i6_fb2048_ftlr0.1_fte5_ct256_ftt0.1,
ft_i6_fb2048_ftlr0.1_fte10_ct256_ftt0.1,
@ -84,6 +88,8 @@ natsbench_imagenet16-120:
ft_i6_fb512_ftlr0.1_fte10_ct256_ftt0.2,
ft_i6_fb256_ftlr0.1_fte5_ct256_ftt0.2]
zero_cost: ['zero_cost_nb201_ImageNet16-120']
shortreg: [nb_i16_reg_b256_e10,
nb_i16_reg_b256_e20,
nb_i16_reg_b256_e30,

Просмотреть файл

@ -14,6 +14,8 @@ import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go
ZERO_COST_MEASURES = ['fisher', 'grad_norm', 'grasp', 'jacob_cov', 'plain', 'snip', 'synflow', 'synflow_bn']
def parse_raw_data(root_exp_folder:str, exp_list:List[str])->Dict:
data = {}
@ -26,7 +28,7 @@ def parse_raw_data(root_exp_folder:str, exp_list:List[str])->Dict:
def main():
parser = argparse.ArgumentParser(description='Cross Experiment Plots')
parser.add_argument('--dataset', type=str, default='nasbench101',
parser.add_argument('--dataset', type=str, default='natsbench_imagenet16-120',
help='dataset on which experiments have been run')
parser.add_argument('--conf_location', type=str, default='scripts/reports/proxynas_plots/cross_exp_conf.yaml',
help='location of conf file')
@ -39,10 +41,12 @@ def main():
exp_list = conf_data[args.dataset]['freezetrain']
shortreg_exp_list = conf_data[args.dataset]['shortreg']
zero_cost_exp_list = conf_data[args.dataset]['zero_cost']
# parse raw data from all processed experiments
data = parse_raw_data(exp_folder, exp_list)
shortreg_data = parse_raw_data(exp_folder, shortreg_exp_list)
zero_cost_data = parse_raw_data(exp_folder, zero_cost_exp_list)
# collect linestyles and colors to create distinguishable plots
cmap = plt.get_cmap('tab20')
@ -126,6 +130,15 @@ def main():
if j == 0:
break
# get zero cost measures
for j, key in enumerate(zero_cost_data.keys()):
assert tp == zero_cost_data[key]['top_percents'][i]
for measure in ZERO_COST_MEASURES:
spe_name = measure + '_spe'
cr_name = measure + '_ratio_common'
this_tp_info['zero_cost_' + measure] = (0.0, zero_cost_data[key][spe_name][i], zero_cost_data[key][cr_name][i])
# get shortreg
for key in shortreg_data.keys():
exp_name = key
@ -145,6 +158,7 @@ def main():
for ind, tp_key in enumerate(tp_info.keys()):
counter = 0
counter_reg = 0
counter_zero = 0
for exp in tp_info[tp_key].keys():
duration = tp_info[tp_key][exp][0]
spe = tp_info[tp_key][exp][1]
@ -157,7 +171,11 @@ def main():
elif 'nb_reg' in exp or 'nb_c100_reg' in exp or 'nb_i6' in exp or 'nb_i16' in exp or 'nb101_reg' in exp:
marker = counter_reg
marker_color = 'blue'
counter_reg += 1
counter_reg += 1
elif 'zero_cost' in exp:
marker = counter_zero
marker_color = 'green'
counter_zero += 1
else:
raise NotImplementedError