plot the effect of full training. (#243)

This commit is contained in:
Chris Lovett 2023-05-08 15:53:45 -07:00 коммит произвёл GitHub
Родитель f807260cf4
Коммит b33b162902
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
3 изменённых файлов: 97 добавлений и 77 удалений

Двоичные данные
tasks/face_segmentation/aml/images/full_training.png Normal file

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 22 KiB

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Просмотреть файл

@ -44,13 +44,18 @@ validation scores and are discarded:
![snapshot](images/pareto.gif)
When the search completes you can run [train_pareto.py](../../train_pareto.py) to fully train the
pareto models then you can run [snp_test.py](../../snp_test.py) to compute the F1 scores for these
fully trained models on your Qualcomm hardware, the following is a plot you can get from the
notebook showing the final results. Notice that the Qualcomm hardware mostly matches our earlier
`val_iou` pareto curve, but not exactly. The dots shown in gray have fallen off the pareto frontier.
This is why it is always good to test your models on the target hardware. Even better if that
testing can be done in the search loop so that the search finds models that work well on the target
hardware, as we have done in this face segmentation example:
pareto models. When training is finished you can visualize the results of full training in the notebook and you should see something like this:
![full_training](images/full_training.png)
Then you can run [snp_test.py](../../snp_test.py) to compute the F1 scores for these fully trained
models on your Qualcomm hardware, the following is a plot you can get from the notebook showing the
final results comparing F1 accuracy with inference latency. Notice that the Qualcomm hardware F1
score mostly matches our earlier `val_iou` pareto curve, but not exactly. The dots shown in gray
have fallen off the pareto frontier. This is why it is always good to test your models on the target
hardware. Even better if that testing can be done in the search loop so that the search finds
models that work well on the target hardware, as we have done in this face segmentation example:
![errors](images/final_results.png)