зеркало из https://github.com/microsoft/archai.git
180 строки
6.4 KiB
Python
180 строки
6.4 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# Licensed under the MIT license.
|
|
|
|
import torch
|
|
from typing import Callable, List, Optional
|
|
|
|
from torch import nn, Tensor
|
|
from torchvision.models._utils import _make_divisible
|
|
from torchvision.ops.misc import Conv2dNormActivation
|
|
|
|
|
|
# Adapted from https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py
|
|
class CustomInvertedResidual(nn.Module):
|
|
def __init__(
|
|
self,
|
|
inp: int,
|
|
oup: int,
|
|
stride: int,
|
|
expand_ratio: int,
|
|
kernel: int,
|
|
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.stride = stride
|
|
if stride not in [1, 2]:
|
|
raise ValueError(f"stride should be 1 or 2 instead of {stride}")
|
|
|
|
if norm_layer is None:
|
|
norm_layer = nn.BatchNorm2d
|
|
|
|
hidden_dim = int(round(inp * expand_ratio))
|
|
self.use_res_connect = self.stride == 1 and inp == oup
|
|
|
|
layers: List[nn.Module] = []
|
|
if expand_ratio != 1:
|
|
# pw
|
|
layers.append(
|
|
Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
|
|
)
|
|
layers.extend(
|
|
[
|
|
# dw
|
|
Conv2dNormActivation(
|
|
hidden_dim,
|
|
hidden_dim,
|
|
kernel_size=kernel,
|
|
stride=stride,
|
|
groups=hidden_dim,
|
|
norm_layer=norm_layer,
|
|
activation_layer=nn.ReLU6,
|
|
),
|
|
# pw-linear
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
norm_layer(oup),
|
|
]
|
|
)
|
|
self.conv = nn.Sequential(*layers)
|
|
self.out_channels = oup
|
|
self._is_cn = stride > 1
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
if self.use_res_connect:
|
|
return x + self.conv(x)
|
|
else:
|
|
return self.conv(x)
|
|
|
|
|
|
#
|
|
# Adapted from torchvision MobileNetV2 to allow for different kernel sizes
|
|
# to be passed in instead of default value of 3
|
|
class CustomMobileNetV2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_classes: int,
|
|
width_mult: float = 1.0,
|
|
inverted_residual_setting: Optional[List[List[int]]] = None,
|
|
round_nearest: int = 8,
|
|
block: Optional[Callable[..., nn.Module]] = None,
|
|
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
|
dropout: float = 0.2,
|
|
) -> None:
|
|
"""
|
|
MobileNet V2 main class
|
|
|
|
Args:
|
|
num_classes (int): Number of classes
|
|
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
|
inverted_residual_setting: Network structure
|
|
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
|
Set to 1 to turn off rounding
|
|
block: Module specifying inverted residual building block for mobilenet
|
|
norm_layer: Module specifying the normalization layer to use
|
|
dropout (float): The droupout probability
|
|
|
|
"""
|
|
super().__init__()
|
|
|
|
if block is None:
|
|
block = CustomInvertedResidual
|
|
|
|
if norm_layer is None:
|
|
norm_layer = nn.BatchNorm2d
|
|
|
|
input_channel = 32
|
|
last_channel = 1280
|
|
|
|
if inverted_residual_setting is None:
|
|
inverted_residual_setting = [
|
|
# t, c, n, s, k
|
|
[1, 16, 1, 1, 3],
|
|
[6, 24, 2, 2, 3],
|
|
[6, 32, 3, 2, 3],
|
|
[6, 64, 4, 2, 3],
|
|
[6, 96, 3, 1, 3],
|
|
[6, 160, 3, 2, 3],
|
|
[6, 320, 1, 1, 3],
|
|
]
|
|
|
|
# check inverted_residual_setting for validity - t,c,n,s,k are required
|
|
if len(inverted_residual_setting) == 0 or any(len(ir) != 5 for ir in inverted_residual_setting):
|
|
raise ValueError(
|
|
f"inverted_residual_setting should be non-empty or a 5-element list, got {inverted_residual_setting}"
|
|
)
|
|
|
|
# building first layer
|
|
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
|
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
|
features: List[nn.Module] = [
|
|
Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
|
|
]
|
|
# building inverted residual blocks
|
|
for t, c, n, s, k in inverted_residual_setting:
|
|
output_channel = _make_divisible(c * width_mult, round_nearest)
|
|
for i in range(n):
|
|
stride = s if i == 0 else 1
|
|
features.append(
|
|
block(input_channel, output_channel, stride, expand_ratio=t, kernel=k, norm_layer=norm_layer)
|
|
)
|
|
input_channel = output_channel
|
|
# building last several layers
|
|
features.append(
|
|
Conv2dNormActivation(
|
|
input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
|
|
)
|
|
)
|
|
# make it nn.Sequential
|
|
self.features = nn.Sequential(*features)
|
|
|
|
# building classifier
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(p=dropout),
|
|
nn.Linear(self.last_channel, num_classes),
|
|
)
|
|
|
|
# weight initialization
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
|
if m.bias is not None:
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
nn.init.ones_(m.weight)
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
nn.init.zeros_(m.bias)
|
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor:
|
|
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
|
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
|
x = self.features(x)
|
|
# Cannot use "squeeze" as batch-size can be 1
|
|
x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
|
|
x = torch.flatten(x, 1)
|
|
x = self.classifier(x)
|
|
return x
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return self._forward_impl(x)
|