archai/tasks/facial_landmark_detection/model.py

180 строки
6.4 KiB
Python

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import torch
from typing import Callable, List, Optional
from torch import nn, Tensor
from torchvision.models._utils import _make_divisible
from torchvision.ops.misc import Conv2dNormActivation
# Adapted from https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py
class CustomInvertedResidual(nn.Module):
def __init__(
self,
inp: int,
oup: int,
stride: int,
expand_ratio: int,
kernel: int,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
self.stride = stride
if stride not in [1, 2]:
raise ValueError(f"stride should be 1 or 2 instead of {stride}")
if norm_layer is None:
norm_layer = nn.BatchNorm2d
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers: List[nn.Module] = []
if expand_ratio != 1:
# pw
layers.append(
Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
)
layers.extend(
[
# dw
Conv2dNormActivation(
hidden_dim,
hidden_dim,
kernel_size=kernel,
stride=stride,
groups=hidden_dim,
norm_layer=norm_layer,
activation_layer=nn.ReLU6,
),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
norm_layer(oup),
]
)
self.conv = nn.Sequential(*layers)
self.out_channels = oup
self._is_cn = stride > 1
def forward(self, x: Tensor) -> Tensor:
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
#
# Adapted from torchvision MobileNetV2 to allow for different kernel sizes
# to be passed in instead of default value of 3
class CustomMobileNetV2(nn.Module):
def __init__(
self,
num_classes: int,
width_mult: float = 1.0,
inverted_residual_setting: Optional[List[List[int]]] = None,
round_nearest: int = 8,
block: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
dropout: float = 0.2,
) -> None:
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
norm_layer: Module specifying the normalization layer to use
dropout (float): The droupout probability
"""
super().__init__()
if block is None:
block = CustomInvertedResidual
if norm_layer is None:
norm_layer = nn.BatchNorm2d
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s, k
[1, 16, 1, 1, 3],
[6, 24, 2, 2, 3],
[6, 32, 3, 2, 3],
[6, 64, 4, 2, 3],
[6, 96, 3, 1, 3],
[6, 160, 3, 2, 3],
[6, 320, 1, 1, 3],
]
# check inverted_residual_setting for validity - t,c,n,s,k are required
if len(inverted_residual_setting) == 0 or any(len(ir) != 5 for ir in inverted_residual_setting):
raise ValueError(
f"inverted_residual_setting should be non-empty or a 5-element list, got {inverted_residual_setting}"
)
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features: List[nn.Module] = [
Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
]
# building inverted residual blocks
for t, c, n, s, k in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(
block(input_channel, output_channel, stride, expand_ratio=t, kernel=k, norm_layer=norm_layer)
)
input_channel = output_channel
# building last several layers
features.append(
Conv2dNormActivation(
input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
)
)
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(p=dropout),
nn.Linear(self.last_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x: Tensor) -> Tensor:
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
x = self.features(x)
# Cannot use "squeeze" as batch-size can be 1
x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)