Modifies project to use cookicutter

@YanZhangADS Refactor of project using cookicutter
This commit is contained in:
YanZhangADS 2019-04-10 05:33:29 -04:00 коммит произвёл Mat
Родитель 0a43371b08
Коммит 27a9d6f587
26 изменённых файлов: 1627 добавлений и 90 удалений

Просмотреть файл

@ -1,11 +1,13 @@
### Authors: Yan Zhang, Mathew Salvaris, and Fidan Boylu Uz
[![Build Status](https://dev.azure.com/customai/AKSDeploymentTutorialAML/_apis/build/status/Microsoft.AKSDeploymentTutorialAML?branchName=master)](https://dev.azure.com/customai/AKSDeploymentTutorialAML/_build/latest?definitionId=11&branchName=master)
# Deploy Deep Learning CNN on Kubernetes Cluster with GPUs - AML version
# Deploy Deep Learning CNN using Azure Machine Learning
## Overview
In this repository there are a number of tutorials in Jupyter notebooks that have step-by-step instructions on how to deploy a pretrained deep learning model on a GPU enabled Kubernetes cluster throught Azure Machine Learning (AML). The tutorials cover how to deploy models from the following deep learning frameworks:
In this repository there are a number of tutorials in Jupyter notebooks that have step-by-step instructions on how to deploy a pretrained deep learning model on a GPU enabled Kubernetes cluster throught Azure Machine Learning (AML). The tutorials cover how to deploy models from the following deep learning frameworks on specific deployment target:
* [Keras (TensorFlow backend)](Keras_Tensorflow)
* [Pytorch](Pytorch) (coming soon)
* Keras (TensorFlow backend)
- [Azure Kubernetes Service (AKS) Cluster with GPUs](./{{cookiecutter.project_name}}/Keras_Tensorflow/aks)
- [Azure IoT Edge](./{{cookiecutter.project_name}}/Keras_Tensorflow/iotedge)
* [Pytorch](./{{cookiecutter.project_name}}/Pytorch) (coming soon)
![alt text](static/example.png "Example Classification")
@ -14,17 +16,21 @@ In this repository there are a number of tutorials in Jupyter notebooks that hav
* Model development where we load the pretrained model and test it by using it to score images
* Develop the API that will call our model
* Building the Docker Image with our REST API and model and testing the image
* AKS option
* Creating our Kubernetes cluster and deploying our application to it
* Testing the deployed model
* Testing the throughput of our model
* Cleaning up resources
* IOT Edge option
* Creating IoT hub and IoT Edge device identity, configuring the physical IOT Edge device, and deploying our application to it
* Cleaning up resources
## Design
The application we will develop is a simple image classification service, where we will submit an image and get back what class the image belongs to. The application flow for the deep learning model is as follows:
1) Deep learning model is registered to AML model registry.
2) AML creates a docker image including the model and scoring script.
3) AML deploys the scoring image on Azure Kubernetes Service (AKS) as a web service.
3) AML deploys the scoring image on the chosen deployment compute target (AKS or IoT Edge) as a web service.
4) The client sends a HTTP POST request with the encoded image data.
5) The web service created by AML preprocesses the image data and sends it to the model for scoring.
6) The predicted categories with their scores are then returned to the client.
@ -36,11 +42,47 @@ The application we will develop is a simple image classification service, where
## Setup
Please find out the Prerequisites and Setup procedures for different networks:
# Getting Started
* [Keras (TensorFlow backend)](Keras_Tensorflow)
* [Pytorch](Pytorch) (coming soon)
To get started with the tutorial, please proceed with following steps **in sequential order**.
* [Prerequisites](#prerequisites)
* [Setup](#setup)
<a id='prerequisites'></a>
## Prerequisites
1. Linux (x64) with GPU enabled.
2. [Anaconda Python](https://www.anaconda.com/download)
3. [Docker](https://docs.docker.com/v17.12/install/linux/docker-ee/ubuntu) installed.
4. [Azure account](https://azure.microsoft.com).
The tutorial was developed on an [Azure Ubuntu
DSVM](https://docs.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro),
which addresses the first three prerequisites.
<a id='setup'></a>
## Setup
To set up your environment to run these notebooks, please follow these steps.
1. Create a _Linux_ Ubuntu DSVM (NC6 or above to use GPU).
2. Install [cookiecutter](https://cookiecutter.readthedocs.io/en/latest/installation.html), a tool creates projects from project templates.
```bash
pip install cookiecutter
```
3. Clone and choose a specific framework and deployment option for this repository. You will obtain a repository tailored to your choice of framework and deployment compute target.
```bash
cookiecutter https://github.com/Microsoft/AKSDeploymentTutorialAML.git
```
You will be asked to choose or enter information such as *framework*, *project name*, *subsciption id*, *resource group*, etc. in an interactive way. If a dafault value is provided, you can press *Enter* to accept the default value and continue or enter value of your choice. For example, if you want to learn how to deploy deep learning model on AKS Cluster using Keras, you should have values "keras" as the value for variable *framework* and "aks" for variable *deployment_type*. Instead, if you want to learn deploying deep learning model on IoT Edge, you should select "iotedge" for variable *deployment_type*.
You must provide a value for "subscription_id", otherwise the project will fail with the error "ERROR: The subscription id is missing, please enter a valid subscription id" after all the questions are asked. The full list of questions can be found in [cookiecutter.json](./cookiecutter.json) file.
Please make sure all entered information are correct, as these information are used to customize the content of your repo.
4. With the generation of the project custom readmes will be created based on [aks-keras](./{{cookiecutter.project_name}}/Keras_Tensorflow/aks/README.md) or [iotedge-keras](./{{cookiecutter.project_name}}/Keras_Tensorflow/iotedge/README.md). Go find a README.md file in your project directory and proceed with instructions specified in it.

Просмотреть файл

@ -22,69 +22,102 @@ jobs:
displayName: 'Builds source for AKSDeploymentTutorialAML/Keras_Tensorflow'
- bash: |
cd Keras_Tensorflow
echo $(pwd)
cd {{cookiecutter.project_template}}/Keras_Tensorflow
conda env create -f environment.yml
source activate aks_deployment_aml
source activate deployment_aml
conda env list
echo Docker Setup
#sudo usermod -aG docker $USER
echo Login Azure Account
az login -t $(sptenent) --service-principal -u $(spidentity) --password $(spsecret)
az account set --subscription $(subscriptionid)
displayName: 'Build Configuration'
- bash: |
source activate aks_deployment_aml
cd Keras_Tensorflow
papermill 00_AMLSetup.ipynb 00_AMLSetup_output.ipynb --log-output --no-progress-bar -k python3 -p resource_group $(azureresourcegroup) -p workspace_name $(workspacename) -p workspace_region $(azureregion) -p subscription_id $(subscriptionid) -p image_name 'modelimg' -p aks_name 'aksdeployamlaks' -p aks_service_name 'aksamlsvc' -p aks_location $(azureregion)
source activate deployment_aml
cd {{cookiecutter.project_template}}/Keras_Tensorflow
papermill 00_AMLSetup.ipynb 00_AMLSetup_output.ipynb \
--log-output \
--no-progress-bar \
-k python3 \
-p resource_group $(azureresourcegroup) \
-p workspace_name $(workspacename) \
-p workspace_region $(azureregion) \
-p subscription_id $(subscriptionid) \
-p image_name 'modelimg' \
-p aks_name 'aksdeployamlaks' \
-p aks_service_name 'aksamlsvc' \
-p aks_location $(azureregion) \
displayName : '00_AMLSetup.ipynb'
- bash: |
source activate aks_deployment_aml
cd Keras_Tensorflow
source activate deployment_aml
cd {{cookiecutter.project_template}}/Keras_Tensorflow
papermill 01_DevelopModel.ipynb 01_DevelopModel_output.ipynb --log-output --no-progress-bar -k python3
displayName : '01_DevelopModel.ipynb'
- bash: |
source activate aks_deployment_aml
cd Keras_Tensorflow
source activate deployment_aml
cd {{cookiecutter.project_template}}/Keras_Tensorflow
papermill 02_DevelopModelDriver.ipynb 02_DevelopModelDriver_output.ipynb --log-output --no-progress-bar -k python3
displayName : '02_DevelopModelDriver.ipynb'
- bash: |
source activate aks_deployment_aml
cd Keras_Tensorflow
source activate deployment_aml
cd {{cookiecutter.project_template}}/Keras_Tensorflow
papermill 03_BuildImage.ipynb 03_BuildImage_output.ipynb --log-output --no-progress-bar -k python3
displayName : '03_BuildImage.ipynb'
- bash: |
source activate aks_deployment_aml
cd Keras_Tensorflow
source activate deployment_aml
cd {{cookiecutter.project_template}}/Keras_Tensorflow/aks
papermill 04_DeployOnAKS.ipynb 04_DeployOnAKS_output.ipynb --log-output --no-progress-bar -k python3
displayName : '04_DeployOnAKS.ipynb'
- bash: |
source activate aks_deployment_aml
cd Keras_Tensorflow
source activate deployment_aml
cd {{cookiecutter.project_template}}/Keras_Tensorflow/aks
papermill 05_TestWebApp.ipynb 05_TestWebApp_output.ipynb --log-output --no-progress-bar -k python3
displayName : '05_TestWebApp.ipynb'
- bash: |
source activate aks_deployment_aml
cd Keras_Tensorflow
source activate deployment_aml
cd {{cookiecutter.project_template}}/Keras_Tensorflow/aks
papermill 06_SpeedTestWebApp.ipynb 06_SpeedTestWebApp_output.ipynb --log-output --no-progress-bar -k python3
displayName : '06_SpeedTestWebApp.ipynb'
- bash: |
source activate aks_deployment_aml
cd Keras_Tensorflow
source activate deployment_aml
export PYTHONPATh=$(pwd)/{{cookiecutter.project_template}}/Keras_Tensorflow:${PYTHONPATH}
cd {{cookiecutter.project_template}}/Keras_Tensorflow/iotedge
papermill 04_DeployOnIOTedge.ipynb 04_DeployOnIOTedge_output.ipynb \
--log-output \
--no-progress-bar \
-k python3 \
-p iot_hub_name fstlstnameiothub \
-p device_id mygpudevice \
-p module_name mygpumodule
displayName: '04_DeployOnIOTedge.ipynb'
- bash: |
source activate deployment_aml
cd {{cookiecutter.project_template}}/Keras_Tensorflow/aks
papermill 07_TearDown.ipynb 07_TearDown_output.ipynb --log-output --no-progress-bar -k python3
displayName : '07_TearDown.ipynb'
- bash: |
source activate deployment_aml
export PYTHONPATh=$(pwd)/{{cookiecutter.project_template}}/Keras_Tensorflow:${PYTHONPATH}
cd {{cookiecutter.project_template}}/Keras_Tensorflow/iotedge
papermill 05_TearDown.ipynb 05_TearDown_output.ipynb \
--log-output \
--no-progress-bar \
-k python3
displayName: '05_TearDown.ipynb'
- bash: |
echo Remove All Docker Containers
#docker stop $(docker ps -a -q)
#docker rm $(docker ps -a -q)
docker stop $(docker ps -a -q)
docker rm $(docker ps -a -q)
echo Remove Conda Environment
conda remove -n aks_deployment_aml --all -q --force -y

17
cookiecutter.json Normal file
Просмотреть файл

@ -0,0 +1,17 @@
{
"framework":"keras",
"project_name":"dlmodeldeploy",
"subscription_id": "",
"resource_group": "aksdeploykerasrg",
"workspace_name": "workspace",
"workspace_region": [
"eastus",
"eastus2"
],
"image_name": "kerasimage",
"deployment_type": [
"aks",
"iotedge"
]
}

36
hooks/post_gen_project.py Normal file
Просмотреть файл

@ -0,0 +1,36 @@
import os
import shutil
PROJECT_DIRECTORY = os.path.realpath(os.path.curdir)
def remove_file(filepath):
os.remove(os.path.join(PROJECT_DIRECTORY, filepath))
def remove_dir(dirpath):
shutil.rmtree(os.path.join(PROJECT_DIRECTORY, dirpath))
def move_files(parentdir, subdir):
root = os.path.join(PROJECT_DIRECTORY, parentdir)
for filename in os.listdir(os.path.join(root, subdir)):
shutil.move(os.path.join(root, subdir, filename), os.path.join(root, filename))
os.rmdir(os.path.join(root, subdir))
if __name__ == "__main__":
if "{{ cookiecutter.framework }}" == "keras":
remove_dir("./Pytorch")
if "{{ cookiecutter.deployment_type }}" == "aks":
remove_dir("./Keras_Tensorflow/iotedge")
move_files("./Keras_Tensorflow", "./aks")
if "{{ cookiecutter.deployment_type }}" == "iotedge":
remove_dir("./Keras_Tensorflow/aks")
move_files("./Keras_Tensorflow", "./iotedge")
else:
remove_dir("./Keras_Tensorflow")

51
hooks/pre_gen_project.py Normal file
Просмотреть файл

@ -0,0 +1,51 @@
import re
import sys
MODULE_REGEX = r"^[_a-zA-Z][_a-zA-Z0-9]+$"
def check_module(module_name):
if not re.match(MODULE_REGEX, module_name):
print(
"ERROR: The project slug {} is not a valid Python module name. Please do not use a - and use _ instead".format(
module_name
)
)
# Exit to cancel project
sys.exit(1)
def check_sub_id(sub_id):
if len(sub_id) == 0:
print(
"ERROR: The subscription id is missing, please enter a valid subscription id slug"
)
# Exit to cancel project
sys.exit(1)
def check_image_name(image_name):
if "_" in image_name:
print(
"ERROR: The image name must not have underscores in it {}".format(
image_name
)
)
# Exit to cancel project
sys.exit(1)
if __name__ == "__main__":
check_module("{{cookiecutter.project_name}}")
check_sub_id("{{cookiecutter.subscription_id}}")
check_image_name("{{cookiecutter.image_name}}")
print("All checks passed")
if "{{ cookiecutter.deployment_type }}" == "aks":
print("Creating AKS project...")
if "{{ cookiecutter.deployment_type }}" == "iotedge":
print("Creating IOT Edge project...")

Просмотреть файл

@ -102,17 +102,17 @@
"outputs": [],
"source": [
"# Azure resources\n",
"subscription_id = \"<YOUR_SUBSCRIPTION_ID>\"\n",
"resource_group = \"<YOUR_RESOURCE_GROUP>\" # e.g. resource_group = 'myamlrg'\n",
"workspace_name = \"<YOUR_WORKSPACE_NAME>\" # e.g. workspace_name = 'myamlworkspace'\n",
"workspace_region = \"<YOUR_WORKSPACE_REGION>\" # e.g. workspace_region = 'eastus2'\n",
"subscription_id = \"{{cookiecutter.subscription_id}}\"\n",
"resource_group = \"{{cookiecutter.resource_group}}\" \n",
"workspace_name = \"{{cookiecutter.workspace_name}}\" \n",
"workspace_region = \"{{cookiecutter.workspace_region}}\" # e.g. workspace_region = \"{{cookiecutter.workspace_region}}\"\n",
"\n",
"# Docker image and Azure Kubernetes Service (AKS) Cluster - deployment compute\n",
"image_name = (\n",
" \"<YOUR_IMAGE_NAME>\"\n",
") # e.g. image_name = \"image1 (avoid underscore in names)\"\n",
" \"{{cookiecutter.image_name}}\"\n",
") # e.g. image_name = \"{{cookiecutter.image_name}} (avoid underscore in names)\"\n",
"aks_name = \"<YOUR_AKS_NAME>\" # e.g. aks_name = \"my-aks-gpu1\"\n",
"aks_location = \"<YOUR_AKS_LOCATION>\" # e.g. aks_location = \"eastus\"\n",
"aks_location = \"<YOUR_AKS_LOCATION>\" # e.g. aks_location = \"{{cookiecutter.workspace_region}}\"\n",
"aks_service_name = (\n",
" \"<YOUR_AKS_SERVICE_NAME>\"\n",
") # e.g. aks_service_name =\"my-aks-service-1\""
@ -223,7 +223,7 @@
"formats": "ipynb"
},
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
@ -237,7 +237,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.5.5"
}
},
"nbformat": 4,

Просмотреть файл

@ -11,9 +11,9 @@ Usage:
make clean delete env and remove files
endef
export PROJECT_HELP_MSG
include .dev_env
env_location=.dev_env
PWD:=$(shell pwd)
include ${env_location}
help:
@ -21,7 +21,7 @@ help:
test: setup test-notebook1 test-notebook2 test-notebook3 test-notebook4 test-notebook5 test-notebook6 test-notebook7 \
test-notebook8
test-notebook-iot1 test-notebook8 test-notebook-iot2
@echo All Notebooks Passed
setup:
@ -36,7 +36,7 @@ endif
test-notebook1:
source activate aks_deployment_aml
source activate deployment_aml
@echo Testing 00_AMLSetup.ipynb
papermill 00_AMLSetup.ipynb test.ipynb \
--log-output \
@ -52,7 +52,7 @@ test-notebook1:
-p aks_service_name ${AKS_SERVICE_NAME}
test-notebook2:
source activate aks_deployment_aml
source activate deployment_aml
@echo Testing 01_DevelopModel.ipynb
papermill 01_DevelopModel.ipynb test.ipynb \
--log-output \
@ -60,7 +60,7 @@ test-notebook2:
-k python3
test-notebook3:
source activate aks_deployment_aml
source activate deployment_aml
@echo Testing 02_DevelopModelDriver.ipynb
papermill 02_DevelopModelDriver.ipynb test.ipynb \
--log-output \
@ -68,7 +68,7 @@ test-notebook3:
-k python3
test-notebook4:
source activate aks_deployment_aml
source activate deployment_aml
@echo Testing 03_BuildImage.ipynb
papermill 03_BuildImage.ipynb test.ipynb \
--log-output \
@ -76,42 +76,77 @@ test-notebook4:
-k python3
test-notebook5:
source activate aks_deployment_aml
source activate deployment_aml
@echo Testing 04_DeployOnAKS.ipynb
papermill 04_DeployOnAKS.ipynb test.ipynb \
papermill aks/04_DeployOnAKS.ipynb test.ipynb \
--log-output \
--no-progress-bar \
-k python3
test-notebook6:
source activate aks_deployment_aml
source activate deployment_aml
@echo Testing 05_TestWebApp.ipynb
papermill 05_TestWebApp.ipynb test.ipynb \
papermill aks/05_TestWebApp.ipynb test.ipynb \
--log-output \
--no-progress-bar \
-k python3
test-notebook7:
source activate aks_deployment_aml
source activate deployment_aml
@echo Testing 06_SpeedTestWebApp.ipynb
papermill 06_SpeedTestWebApp.ipynb test.ipynb \
papermill aks/06_SpeedTestWebApp.ipynb test.ipynb \
--log-output \
--no-progress-bar \
-k python3
test-notebook-iot1:
source activate deployment_aml
@echo Testing 04_DeployOnIOTedge.ipynb
export PYTHONPATH=${PWD}:${PYTHONPATH}
cd iotedge
papermill 04_DeployOnIOTedge.ipynb test.ipynb \
--log-output \
--no-progress-bar \
-k python3 \
-p iot_hub_name fstlstnameiothub \
-p device_id mygpudevice \
-p module_name mygpumodule
test-notebook8:
source activate aks_deployment_aml
source activate deployment_aml
@echo Testing 07_TearDown.ipynb
papermill 07_TearDown.ipynb test.ipynb \
papermill aks/07_TearDown.ipynb test.ipynb \
--log-output \
--no-progress-bar \
-k python3
test-notebook-iot2:
source activate deployment_aml
@echo Testing 05_TearDown.ipynb
export PYTHONPATH=${PWD}:${PYTHONPATH}
papermill iotedge/05_TearDown.ipynb test.ipynb \
--log-output \
--no-progress-bar \
-k python3
test-cookiecutter-aks:
cookiecutter --no-input https://github.com/Microsoft/AKSDeploymentTutorialAML.git --checkout mat_yzhang_cc \
subscription_id="${SUBSCRIPTION_ID}" \
workspace_region=${WORKSPACE_REGION} \
deployment_type="aks"
test-cookiecutter-iot:
cookiecutter --no-input https://github.com/Microsoft/AKSDeploymentTutorialAML.git --checkout mat_yzhang_cc \
subscription_id=${SUBSCRIPTION_ID} \
workspace_region=${WORKSPACE_REGION} \
deployment_type="iotedge"
remove-notebook:
rm -f test.ipynb
clean: remove-notebook
conda remove --name aks_deployment_aml -y --all
conda remove --name deployment_aml -y --all
rm -rf aml_config
rm -rf __pycache__
rm -rf .ipynb_checkpoints
@ -120,11 +155,11 @@ clean: remove-notebook
rm driver.py img_env.yml model_resnet_weights.h5
notebook:
source activate aks_deployment_aml
source activate deployment_aml
jupyter notebook --port 9999 --ip 0.0.0.0 --no-browser
install-jupytext:
source activate aks_deployment_aml
source activate deployment_aml
conda install -c conda-forge jupytext
convert-to-py:
@ -140,4 +175,4 @@ remove-py:
rm -r py_scripts
.PHONY: help test setup clean remove-notebook test-notebook1 test-notebook2 test-notebook3 test-notebook4 \
test-notebook5 test-notebook6 test-notebook7 test-notebook8
test-notebook5 test-notebook6 test-notebook7 test-notebook-iot test-notebook9

Просмотреть файл

@ -217,7 +217,7 @@
"cell_type": "code",
"execution_count": 12,
"metadata": {
"lines_to_next_cell": 2
"lines_to_next_cell": 2.0
},
"outputs": [],
"source": [

Просмотреть файл

@ -3,13 +3,12 @@
To get started with the tutorial, please proceed with following steps **in sequential order**.
* [Prerequisites](#prerequisites)
* [Setup](#setup)
* [Steps](#steps)
* [Cleaning up](#cleanup)
<a id='prerequisites'></a>
## Prerequisites
1. Linux(Ubuntu) with GPU enabled.
1. Linux (x64) with GPU enabled.
2. [Anaconda Python](https://www.anaconda.com/download)
3. [Docker](https://docs.docker.com/v17.12/install/linux/docker-ee/ubuntu) installed.
4. [Azure account](https://azure.microsoft.com).
@ -18,47 +17,41 @@ The tutorial was developed on an [Azure Ubuntu
DSVM](https://docs.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro),
which addresses the first three prerequisites.
<a id='setup'></a>
## Setup
To set up your environment to run these notebooks, please follow these steps. They setup the notebooks to use Docker and Azure seamlessly.
1. Create a _Linux_ DSVM (NC6 or above to use GPU).
2. Clone, fork, or download the zip file for this repository:
```
git clone https://github.com/Microsoft/AKSDeploymentTutorialAML.git
```
3. Add your user to the docker group (after executing this command, exit and start a new bash shell):
<a id='steps'></a>
## Steps
Please follow these steps to set up your environment and run notebooks. They setup the notebooks to use Docker and Azure seamlessly.
1. Add your user to the docker group (after executing this command, exit and start a new bash shell):
```
sudo usermod -aG docker $USER
```
To verify whether you have correct configuration, try executing `docker ps` command. You should not get `permission denied` errors.
4. Navigate to _./AKSDeploymentTutorial\_AML/Keras\_Tensorflow_ directory
2. Navigate to the directory which is the framework you have chosen (e.g. Keras_Tensorflow).
5. Create the Python virtual environment using the environment.yml:
3. Create the Python virtual environment using the environment.yml:
```
conda env create -f environment.yml
```
6. Activate the virtual environment:
4. Activate the virtual environment:
```
source activate aks_deployment_aml
source activate deployment_aml
```
7. Login to Azure:
5. Login to Azure:
```
az login
```
8. If you have more than one Azure subscription, select it:
6. If you have more than one Azure subscription, select it:
```
az account set --subscription <Your Azure Subscription>
```
9. Start the Jupyter notebook server in the virtual environment:
7. Start the Jupyter notebook server in the virtual environment:
```
jupyter notebook
```
10. Select correct kernel: set the kernel to be `Python [conda env:aks_deployment_aml]`(or `Python 3` if that option does not show).
8. Select correct kernel: set the kernel to be `Python [conda env: deployment_aml]`(or `Python 3` if that option does not show).
<a id='steps'></a>
## Steps
After following the setup instructions above, run the Jupyter notebooks in order starting with the first notebook [00_AMLSetup.ipynb](./00_AMLSetup.ipynb).
9. After following the setup instructions above, run the Jupyter notebooks in order starting with the first notebook [00_AMLSetup.ipynb](./00_AMLSetup.ipynb).
<a id='cleanup'></a>
## Cleaning up

Просмотреть файл

@ -1,4 +1,4 @@
name: aks_deployment_aml
name: deployment_aml
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Просмотреть файл

@ -0,0 +1,133 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tear it all down\n",
"Once you are done with your task you can use the following commands to clean up resources."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from dotenv import set_key, get_key, find_dotenv\n",
"from testing_utilities import get_auth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config(auth=get_auth())\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep=\"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"env_path = find_dotenv(raise_error_if_not_found=True)\n",
"resource_group = get_key(env_path, 'resource_group')\n",
"iot_hub_name = get_key(env_path, 'iot_hub_name')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!sudo systemctl stop iotedge"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!sudo apt-get remove -y iotedge"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Delete the IoT hub. This step may take a few minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Delete IoT hub\n",
"cmd_results = !az iot hub show -n $iot_hub_name -g $resource_group\n",
"if 'Not Found' not in cmd_results[0]:\n",
" !az iot hub delete --name $iot_hub_name --resource-group $resource_group"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, you should delete the resource group. This also deletes the IoT hub and can be used instead of the above command if the resource group is only used for this purpose."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cmd_results = !az group show -n $resource_group -o tsv\n",
"if \"not be found\" not in cmd_results[0]:\n",
" !az group delete --name $resource_group -y"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!docker stop $(docker ps -qa)\n",
"!docker rm $(docker ps -qa)"
]
}
],
"metadata": {
"jupytext": {
"formats": "ipynb"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Просмотреть файл

@ -0,0 +1,67 @@
{
"modulesContent": {
"$edgeAgent": {
"properties.desired": {
"schemaVersion": "1.0",
"runtime": {
"type": "docker",
"settings": {
"loggingOptions": "",
"minDockerVersion": "v1.25",
"registryCredentials": {
"amlregistry": {
"address": "__REGISTRY_NAME.azurecr.io",
"password": "__REGISTRY_PASSWORD",
"username": "__REGISTRY_USER_NAME"
}
}
}
},
"systemModules": {
"edgeAgent": {
"type": "docker",
"settings": {
"image": "mcr.microsoft.com/azureiotedge-agent:1.0",
"createOptions": ""
}
},
"edgeHub": {
"type": "docker",
"settings": {
"image": "mcr.microsoft.com/azureiotedge-hub:1.0",
"createOptions": "{\"HostConfig\":{\"PortBindings\":{\"8883/tcp\":[{\"HostPort\":\"8883\"}],\"443/tcp\":[{\"HostPort\":\"443\"}],\"5671/tcp\":[{\"HostPort\":\"5671\"}]}}}"
},
"status": "running",
"restartPolicy": "always"
}
},
"modules": {
"__MODULE_NAME": {
"type": "docker",
"settings": {
"image": "__REGISTRY_IMAGE_LOCATION",
"createOptions": "{\"HostConfig\":{\"Runtime\":\"nvidia\",\"PortBindings\":{\"5001/tcp\":[{\"HostPort\":\"5001\"}]}}}"
},
"version": "1.0",
"status": "running",
"restartPolicy": "always"
}
}
}
},
"$edgeHub": {
"properties.desired": {
"schemaVersion": "1.0",
"routes": {
"route": "FROM /messages/* INTO $upstream"
},
"storeAndForwardConfiguration": {
"timeToLiveSecs": 7200
}
}
},
"__MODULE_NAME": {
"properties.desired": {}
}
}
}

Просмотреть файл

@ -0,0 +1,89 @@
# Deploy Deep Learning CNN on IoT Edge - Keras
In this tutorial, we introduce how to deploy an ML/DL (machine learning/deep learning) module through [Azure IoT Edge](https://docs.microsoft.com/en-us/azure/iot-edge/how-iot-edge-works).
Azure IoT Edge is an Internet of Things (IoT) service that builds on top of Azure IoT Hub. It is a hybrid solution combining the benefits of the two scenarios: *IoT in the Cloud* and *IoT on the Edge*. This service is meant for customers who want to analyze data on devices, a.k.a. "at the edge", instead of in the cloud. By moving parts of your workload to the edge, your devices can spend less time sending messages to the cloud and react more quickly to changes in status. On the other hand, Azure IoT Hub provides centralized way to manage Azure IoT Edge devices, and make it easy to train ML models in the Cloud and deploy the trained models on the Edge devices.
In this example, we deploy a trained Keras (tensorflow) CNN model to the edge device. When the image data is generated from a process pipeline and fed into the edge device, the deployed model can make predictions right on the edge device without accessing to the cloud. Following diagram shows the major components of an Azure IoT edge device. Source code and full documentation are linked below.
<p align="center">
<img src="azureiotedgeruntime.png" alt="logo" width="90%"/>
</p>
We perform following steps for the deployment.
- Step 1: Build the trained ML/DL model into docker image. This image will be used to create a docker container running on the edge device.
- Step 2: Provision and Configure IoT Edge Device
- Step 3: Deploy ML/DL Module on IoT Edge Device
- Step 4: Test ML/DL Module
To get started with the tutorial, please proceed with following steps **in sequential order**.
* [Prerequisites](#prerequisites)
* [Steps](#steps)
* [Cleaning up](#cleanup)
<a id='prerequisites'></a>
## Prerequisites
1. Linux (x64) with GPU enabled.
2. [Anaconda Python](https://www.anaconda.com/download)
3. [Docker](https://docs.docker.com/v17.12/install/linux/docker-ee/ubuntu) installed.
4. [Azure account](https://azure.microsoft.com).
The tutorial was developed on an [Azure Ubuntu
DSVM](https://docs.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro),
which addresses the first three prerequisites.
<a id='steps'></a>
## Steps
Please follow these steps to set up your environment and run notebooks. They setup the notebooks to use Docker and Azure seamlessly.
1. Add your user to the docker group (after executing this command, exit and start a new bash shell):
```
sudo usermod -aG docker $USER
```
To verify whether you have correct configuration, try executing `docker ps` command. You should not get `permission denied` errors.
2. Navigate to the directory which is the framework you have chosen (e.g. Keras_Tensorflow).
3. Create the Python virtual environment using the environment.yml:
```
conda env create -f environment.yml
```
4. Activate the virtual environment:
```
source activate deployment_aml
```
5. Login to Azure:
```
az login
```
6. If you have more than one Azure subscription, select it:
```
az account set --subscription <Your Azure Subscription>
```
7. Start the Jupyter notebook server in the virtual environment:
```
jupyter notebook
```
8. Select correct kernel: set the kernel to be `Python [conda env: deployment_aml]`(or `Python 3` if that option does not show).
9. After following the setup instructions above, run the Jupyter notebooks in order starting with the first notebook [00_AMLSetup.ipynb](./00_AMLSetup.ipynb).
<a id='cleanup'></a>
## Cleaning up
To remove the conda environment created see [here](https://conda.io/projects/continuumio-conda/en/latest/commands/remove.html). The [last Jupyter notebook](./05_TearDown.ipynb) also gives details on deleting Azure resources associated with this repository.
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repositories using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 50 KiB

Просмотреть файл

@ -0,0 +1,53 @@
# Install the repository configuration. Replace <release> with 16.04 or 18.04 as appropriate for your release of Ubuntu
curl https://packages.microsoft.com/config/ubuntu/__release/prod.list > ./microsoft-prod.list
# Copy the generated list
sudo cp ./microsoft-prod.list /etc/apt/sources.list.d/
#Install Microsoft GPG public key
curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor > microsoft.gpg
sudo cp ./microsoft.gpg /etc/apt/trusted.gpg.d/
#################################################################################
#Install the container runtime. It can be skipped if Docker is already installed
# Update the apt package index
#sudo apt-get update
# Install the Moby engine.
#sudo apt-get install moby-engine
################################################################################
# Install the Azure IoT Edge Security Daemon
# Perform apt update
sudo apt-get update
# Install the Moby command-line interface (CLI). The CLI is useful for development but optional for production deployments.
sudo apt-get install moby-cli
# Install the security daemon. The package is installed at /etc/iotedge/.
sudo apt-get install iotedge -y --no-install-recommends
################################################################################
#Configure the Azure IoT Edge Security
# Manual provisioning IoT edge device
sudo sed -i "s#\(device_connection_string: \).*#\1\"__device_connection_string\"#g" /etc/iotedge/config.yaml
############################################
# double check if the IP address of the docker0 interface is 172.17.01 by using ifconfig command
sudo sed -i "s#\(management_uri: \).*#\1\"__management_uri\"#g" /etc/iotedge/config.yaml
sudo sed -i "s#\(workload_uri: \).*#\1\"__workload_uri\"#g" /etc/iotedge/config.yaml
# restart the daemon
sudo systemctl restart iotedge
###########################################
# Verify successful installation
# check the status of the IoT Edge Daemon
systemctl status iotedge
# Examine daemon logs
journalctl -u iotedge --no-pager --no-full

Просмотреть файл