EN entity models and revert 20210211 to 20210205 (#6214)

* EN entity models and revert 20210211 to 20210205

* defaults update
This commit is contained in:
Hung-chih Yang 2021-02-22 13:13:58 -08:00 коммит произвёл GitHub
Родитель 00783ab959
Коммит 516f8d28ac
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
2 изменённых файлов: 34 добавлений и 14 удалений

Просмотреть файл

@ -16,7 +16,7 @@ It is a 6-layer pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]),
thus it can be used out of box. This is the default model used if none explicitly specified.
### pretrained.20210211.microsoft.dte.00.06.unicoder_multilingual.onnx
### pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx
This is a high quality multilingual base model for intent detection. It's smaller and faster than its 12-layer alternative.
It is a 6-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box. The model supports in total 100 languages (full list can be found at [XLMR Supported Languages][8]). 8 languages (EN, ES, DE, FR, IT, JA, PT, and ZH) are fine-tuned with additional data (performance can be found [here](#multilingual-intent-detection-models-evaluation)).
@ -40,8 +40,6 @@ This is a high quality multilingual base model for intent detection.
It is a 12-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box. The model supports in total 100 languages (full list can be found at [XLMR Supported Languages][8]). 8 languages (EN, ES, DE, FR, IT, JA, PT, and ZH) are fine-tuned with additional data (performance can be found [here](#multilingual-intent-detection-models-evaluation)).
## Experimental Models
### pretrained.20210205.microsoft.dte.00.12.bert_example_ner.en.onnx (experimental)
@ -49,6 +47,11 @@ This is a high quality EN-only base model for entity extraction.
It is a 12-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
### pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx (experimental)
This is a yet another high quality EN-only base model for entity extraction.
It is a 12-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
### pretrained.20210105.microsoft.dte.00.12.bert_example_ner_multilingual.onnx (experimental)
This is a high quality multilingual base model for entity extraction.
It is a 12-layer pretrained pretrained [Transformer][7] model optimized for conversation.
@ -64,7 +67,12 @@ This is a high quality EN-only base model for entity extraction. It's smaller an
It is a 6-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
### pretrained.20210211.microsoft.dte.00.06.bert_example_ner_multilingual.onnx (experimental)
### pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx (experimental)
This is a high quality EN-only base model for entity extraction. It's smaller and faster than its 12-layer alternative.
It is a 6-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
### pretrained.20210205.microsoft.dte.00.06.bert_example_ner_multilingual.onnx (experimental)
This is a high quality multilingual base model for entity extraction. It's smaller and faster than its 12-layer alternative.
It is a 6-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
@ -103,21 +111,21 @@ For a more quantitative comparison analysis of the different models see the foll
| Model | Base Model | Layers | Encoding time per query | Disk Allocation |
| ------------------------------------------------------------ | ---------- | ------ | ----------------------- | --------------- |
| pretrained.20210211.microsoft.dte.00.06.unicoder_multilingual.onnx | Unicoder | 6 | ~ 16 ms | 896M |
| pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx | Unicoder | 6 | ~ 16 ms | 896M |
| pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx | Unicoder | 12 | ~ 30 ms | 1.08G |
- The following table shows how accurate is each model by training and testing on the same language, evaluated by **micro-average-accuracy** on an internal dataset.
| Model | de-de | en-us | es-es | es-mx | fr-ca | fr-fr | it-it | ja-jp | pt-br | zh-cn |
| ------------------------------------------------------------ | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- |
| pretrained.20210211.microsoft.dte.00.06.unicoder_multilingual.onnx | 0.638 | 0.785 | 0.662 | 0.760 | 0.723 | 0.661 | 0.701 | 0.786 | 0.735 | 0.805 |
| pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx | 0.638 | 0.785 | 0.662 | 0.760 | 0.723 | 0.661 | 0.701 | 0.786 | 0.735 | 0.805 |
| pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx | 0.642 | 0.764 | 0.646 | 0.754 | 0.722 | 0.636 | 0.689 | 0.789 | 0.725 | 0.809 |
- The following table shows how accurate is each model by training on **en-us** and testing on the different languages, evaluated by **micro-average-accuracy** on an internal dataset.
| Model | de-de | en-us | es-es | es-mx | fr-ca | fr-fr | it-it | ja-jp | pt-br | zh-cn |
| ------------------------------------------------------------ | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- |
| pretrained.20210211.microsoft.dte.00.06.unicoder_multilingual.onnx | 0.495 | 0.785 | 0.530 | 0.621 | 0.560 | 0.518 | 0.546 | 0.663 | 0.568 | 0.687 |
| pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx | 0.495 | 0.785 | 0.530 | 0.621 | 0.560 | 0.518 | 0.546 | 0.663 | 0.568 | 0.687 |
| pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx | 0.499 | 0.764 | 0.529 | 0.604 | 0.562 | 0.515 | 0.547 | 0.646 | 0.555 | 0.681 |
### English Entity Extraction Models Evaluation

Просмотреть файл

@ -2,7 +2,7 @@
"version": "0.2",
"defaults": {
"en_intent": "pretrained.20200924.microsoft.dte.00.06.en.onnx",
"multilingual_intent": "pretrained.20210211.microsoft.dte.00.06.unicoder_multilingual.onnx"
"multilingual_intent": "pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx"
},
"models": {
"pretrained.20200924.microsoft.dte.00.03.en.onnx": {
@ -29,6 +29,12 @@
"description": "(experimental) Bot Framework SDK release 4.10 - English ONNX V1.4 12-layer per-token entity base model",
"minSDKVersion": "4.10.0"
},
"pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx": {
"releaseDate": "02/18/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx.zip",
"description": "(experimental) Bot Framework SDK release 4.10 - English ONNX V1.4 12-layer per-token entity base model",
"minSDKVersion": "4.10.0"
},
"pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx": {
"releaseDate": "12/10/2020",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx.zip",
@ -53,15 +59,21 @@
"description": "(experimental) Bot Framework SDK release 4.10 - English ONNX V1.4 6-layer per-token entity base model",
"minSDKVersion": "4.10.0"
},
"pretrained.20210211.microsoft.dte.00.06.unicoder_multilingual.onnx": {
"releaseDate": "02/11/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210211.microsoft.dte.00.06.unicoder_multilingual.onnx.zip",
"pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx": {
"releaseDate": "02/18/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx.zip",
"description": "(experimental) Bot Framework SDK release 4.10 - English ONNX V1.4 6-layer per-token entity base model",
"minSDKVersion": "4.10.0"
},
"pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx": {
"releaseDate": "02/05/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx.zip",
"description": "Bot Framework SDK release 4.10 - Multilingual ONNX V1.4 6-layer per-token intent base model",
"minSDKVersion": "4.10.0"
},
"pretrained.20210211.microsoft.dte.00.06.bert_example_ner_multilingual.onnx": {
"releaseDate": "02/11/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210211.microsoft.dte.00.06.bert_example_ner_multilingual.onnx.zip",
"pretrained.20210205.microsoft.dte.00.06.bert_example_ner_multilingual.onnx": {
"releaseDate": "02/05/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210205.microsoft.dte.00.06.bert_example_ner_multilingual.onnx.zip",
"description": "(experimental) Bot Framework SDK release 4.10 - Multilingual ONNX V1.4 6-layer per-token entity base model",
"minSDKVersion": "4.10.0"
},