* update model versions

* change from CDF to calibration
This commit is contained in:
Ning Gao 2021-06-22 16:08:12 -07:00 коммит произвёл GitHub
Родитель 22098444be
Коммит 877a9a63d8
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
2 изменённых файлов: 47 добавлений и 54 удалений

Просмотреть файл

@ -1,58 +1,40 @@
# Prebuilt Language Models
Prebuilt language models have been trained towards more sophisticated tasks for both monolingual as well as multilingual scenarios, including intent prediction and entity extraction.
Entity extraction is currently experimental and not yet readt for production use.
Prebuilt language models have been trained towards more sophisticated tasks for both monolingual as well as multilingual scenarios, including intent prediction and entity extraction. Entity extraction is currently experimental and not yet ready for production use.
The following prebuilt language models are now available in [versions repository][2].
See the [References](#references) section for technical descriptions of the AI technology behind the models.
See the [References](#references) section for technical descriptions of the AI technology behind the models .
## Default Models
### pretrained.20200924.microsoft.dte.00.06.en.onnx
This is a high quality EN-only base model for intent detection that strikes the balance between size,
speed and predictive performance.
It is a 6-layer pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]),
thus it can be used out of box. This is the default model used if none explicitly specified.
This is a high quality EN-only base model for intent detection that strikes the balance between size, speed and predictive performance. It is a 6-layer pretrained [Transformer][7] model optimized for conversation. Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box. This is the default model used if none explicitly specified.
### pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx
This is a high quality multilingual base model for intent detection. It's smaller and faster than its 12-layer alternative.
It is a 6-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box. The model supports in total 100 languages (full list can be found at [XLMR Supported Languages][8]). 8 languages (EN, ES, DE, FR, IT, JA, PT, and ZH) are fine-tuned with additional data (performance can be found [here](#multilingual-intent-detection-models-evaluation)).
This is a high quality multilingual base model for intent detection. It's smaller and faster than its 12-layer alternative. It is a 6-layer pretrained [Transformer][7] model optimized for conversation. Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box. The model supports in total 100 languages (full list can be found at [XLMR Supported Languages][8]). 8 languages (EN, ES, DE, FR, IT, JA, PT, and ZH) are fine-tuned with additional data (performance can be found [here](#multilingual-intent-detection-models-evaluation)).
### pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx (experimental)
This is a high quality EN-only base model for entity extraction. It's smaller and faster than its 12-layer alternative.
It is a 6-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
### pretrained.20210401.microsoft.dte.00.06.bert_example_ner_addon_free.en.onnx (experimental)
This is a high quality EN-only base model for entity extraction. It is a 6-layer pretrained [Transformer][7] model optimized for conversation. Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
## Alternate Models
### pretrained.20200924.microsoft.dte.00.03.en.onnx
This is a fast and small EN-only base model for intent detection with sufficient prediction performance.
We suggest using this model if speed and memory size is critical to your deployment environment,
otherwise consider other options. It is a generic 3-layer pretrained
[Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
This is a fast and small EN-only base model for intent detection with sufficient prediction performance. We suggest using this model if speed and memory size is critical to your deployment environment, otherwise consider other options. It is a generic 3-layer pretrained [Transformer][7] model optimized for conversation. Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
### pretrained.20200924.microsoft.dte.00.12.en.onnx
This is a high quality EN-only base model for intent detection, but is larger and slower than other options.
It is a 12-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
This is a high quality EN-only base model for intent detection, but is larger and slower than other options. It is a 12-layer pretrained [Transformer][7] model optimized for conversation. Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
### pretrained.20210521.microsoft.dte.01.06.int.en.onnx
This is a high quality quantized EN-only base model for intent detection, and it is smaller and faster than other options. It is a 6-layer pretrained [Transformer][7] model optimized for conversation. Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
### pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx
This is a high quality multilingual base model for intent detection.
It is a 12-layer pretrained pretrained [Transformer][7] model optimized for conversation.
This is a high quality multilingual base model for intent detection. It is a 12-layer pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box. The model supports in total 100 languages (full list can be found at [XLMR Supported Languages][8]). 8 languages (EN, ES, DE, FR, IT, JA, PT, and ZH) are fine-tuned with additional data (performance can be found [here](#multilingual-intent-detection-models-evaluation)).
## Experimental Models
### pretrained.20210608.microsoft.dte.01.06.int.unicoder_multilingual.onnx
This is a high quality quantized multilingual base model for intent detection. It is a 6-layer pretrained [Transformer][7] model optimized for conversation. Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box. The model supports in total 100 languages (full list can be found at [XLMR Supported Languages][8]). 8 languages (EN, ES, DE, FR, IT, JA, PT, and ZH) are fine-tuned with additional data (performance can be found [here](#multilingual-intent-detection-models-evaluation)).
### pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx (experimental)
This is a yet another high quality EN-only base model for entity extraction.
It is a 12-layer pretrained pretrained [Transformer][7] model optimized for conversation.
Its architecture is pretrained for example-based use ([KNN][3]), thus it can be used out of box.
## Models Evaluation
For a more quantitative comparison analysis of the different models see the following performance characteristics.
@ -64,9 +46,10 @@ For a more quantitative comparison analysis of the different models see the foll
| Model |Base Model |Layers |Encoding time per query | Disk Allocation |
| ------------ | ------------ | ------------ | ------------ | ------------ |
|pretrained.20200924.microsoft.dte.00.03.en.onnx | BERT | 3 | ~ 7 ms | 164M |
|pretrained.20200924.microsoft.dte.00.06.en.onnx | BERT | 6 | ~ 16 ms | 261M |
|pretrained.20200924.microsoft.dte.00.12.en.onnx | BERT | 12 | ~ 26 ms | 427M |
|pretrained.20200924.microsoft.dte.00.03.en.onnx | BERT | 3 | ~ 7 ms | 164M |
|pretrained.20200924.microsoft.dte.00.06.en.onnx | BERT | 6 | ~ 14 ms | 261M |
|pretrained.20200924.microsoft.dte.00.12.en.onnx | BERT | 12 | ~ 26 ms | 427M |
|pretrained.20210521.microsoft.dte.01.06.int.en.onnx | BERT | 6 | ~ 6 ms | 65M |
-
The following table shows how accurate is each model relative to provided training sample size using [Snips NLU][4] system, evaluated by **micro-average-accuracy**.
@ -77,14 +60,17 @@ For a more quantitative comparison analysis of the different models see the foll
|pretrained.20200924.microsoft.dte.00.03.en.onnx | 0.756 | 0.839 | 0.904 | 0.929 | 0.943 | 0.951 |
|pretrained.20200924.microsoft.dte.00.06.en.onnx | 0.924 | 0.940 | 0.957 | 0.960 | 0.966 | 0.969 |
|pretrained.20200924.microsoft.dte.00.12.en.onnx | 0.902 | 0.931 | 0.951 | 0.960 | 0.964 | 0.969 |
|pretrained.20210521.microsoft.dte.01.06.int.en.onnx | 0.917 | 0.939 | 0.951 | 0.958 | 0.963 | 0.965 |
### Multilingual Intent Detection Models Evaluation
- The following table shows the size & speed performance attributes.
| Model | Base Model | Layers | Encoding time per query | Disk Allocation |
| ------------------------------------------------------------ | ---------- | ------ | ----------------------- | --------------- |
| pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx | Unicoder | 6 | ~ 16 ms | 896M |
| pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx | Unicoder | 12 | ~ 30 ms | 1.08G |
| pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx | Unicoder | 6 | ~ 9 ms | 918M |
| pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx | Unicoder | 12 | ~ 16 ms | 1.08G |
| pretrained.20210608.microsoft.dte.01.06.int.unicoder_multilingual.onnx | Unicoder | 6 | ~ 4 ms | 230M |
- The following table shows how accurate is each model by training and testing on the same language, evaluated by **micro-average-accuracy** on an internal dataset.
@ -92,6 +78,7 @@ For a more quantitative comparison analysis of the different models see the foll
| ------------------------------------------------------------ | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- |
| pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx | 0.638 | 0.785 | 0.662 | 0.760 | 0.723 | 0.661 | 0.701 | 0.786 | 0.735 | 0.805 |
| pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx | 0.642 | 0.764 | 0.646 | 0.754 | 0.722 | 0.636 | 0.689 | 0.789 | 0.725 | 0.809 |
| pretrained.20210608.microsoft.dte.01.06.int.unicoder_multilingual.onnx | 0.634 | 0.765 | 0.657 | 0.743 | 0.715 | 0.646 | 0.697 | 0.780 | 0.743 | 0.799 |
- The following table shows how accurate is each model by training on **en-us** and testing on the different languages, evaluated by **micro-average-accuracy** on an internal dataset.
@ -99,6 +86,7 @@ For a more quantitative comparison analysis of the different models see the foll
| ------------------------------------------------------------ | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- |
| pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx | 0.495 | 0.785 | 0.530 | 0.621 | 0.560 | 0.518 | 0.546 | 0.663 | 0.568 | 0.687 |
| pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx | 0.499 | 0.764 | 0.529 | 0.604 | 0.562 | 0.515 | 0.547 | 0.646 | 0.555 | 0.681 |
| pretrained.20210608.microsoft.dte.01.06.int.unicoder_multilingual.onnx | 0.496 | 0.765 | 0.529 | 0.623 | 0.562 | 0.511 | 0.540 | 0.670 | 0.579 | 0.692 |
### English Entity Extraction Models Evaluation
@ -106,15 +94,14 @@ For a more quantitative comparison analysis of the different models see the foll
| Model | Base Model | Layers | Encoding time per query | Disk Allocation |
| ------------------------------------------------------------ | ---------- | ------ | ----------------------- | --------------- |
| pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx | BERT | 6 | ~ 23 ms | 259M |
| pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx | BERT | 12 | ~ 40 ms | 425M |
| pretrained.20210401.microsoft.dte.00.06.bert_example_ner_addon_free.en.onnx | TNLR | 6 | ~ 29 ms | 253M |
- The following table shows how accurate is each model relative to provided training sample size using [Snips NLU][4] system, evaluated by **macro-average-F1**.
| Training samples per entity type | 10 | 20 | 50 | 100 | 200 |
| ------------------------------------------------------------ | ----- | ----- | ----- | ----- | ----- |
| pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx | 0.637 | 0.658 | 0.673 | 0.686 | 0.684 |
| pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx | 0.661 | 0.664 | 0.670 | 0.685 | 0.681 |
| pretrained.20210401.microsoft.dte.00.06.bert_example_ner_addon_free.en.onnx | 0.702 | 0.712 | 0.731 | 0.752 | 0.739 |

Просмотреть файл

@ -3,7 +3,7 @@
"defaults": {
"en_intent": "pretrained.20200924.microsoft.dte.00.06.en.onnx",
"multilingual_intent": "pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx",
"en_entity": "pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx"
"en_entity": "pretrained.20210401.microsoft.dte.00.06.bert_example_ner_addon_free.en.onnx"
},
"models": {
"pretrained.20200924.microsoft.dte.00.03.en.onnx": {
@ -24,10 +24,16 @@
"description": "Bot Framework SDK release 4.10 - English ONNX V1.4 12-layer per-token intent base model",
"minSDKVersion": "4.10.0"
},
"pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx": {
"releaseDate": "02/18/2021",
"modelUri": "https://aka.ms/pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx",
"description": "(experimental) Bot Framework SDK release 4.12 - English ONNX V1.4 12-layer per-token entity base model",
"pretrained.20210521.microsoft.dte.01.06.int.en.onnx": {
"releaseDate": "06/14/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210521.microsoft.dte.01.06.int.en.onnx.zip",
"description": "Bot Framework SDK release 4.10 - English ONNX V1.4 6-layer int per-token intent base model with updated calibration thresholds",
"minSDKVersion": "4.10.0"
},
"pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx": {
"releaseDate": "02/05/2021",
"modelUri": "https://aka.ms/pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx",
"description": "Bot Framework SDK release 4.12 - Multilingual ONNX V1.4 6-layer per-token intent base model",
"minSDKVersion": "4.12.0"
},
"pretrained.20201210.microsoft.dte.00.12.unicoder_multilingual.onnx": {
@ -36,17 +42,17 @@
"description": "Bot Framework SDK release 4.12 - Multilingual ONNX V1.4 12-layer per-token intent base model",
"minSDKVersion": "4.12.0"
},
"pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx": {
"releaseDate": "02/18/2021",
"modelUri": "https://aka.ms/pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx",
"description": "(experimental) Bot Framework SDK release 4.12 - English ONNX V1.4 6-layer per-token entity base model",
"pretrained.20210608.microsoft.dte.01.06.int.unicoder_multilingual.onnx": {
"releaseDate": "06/14/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210608.microsoft.dte.01.06.int.unicoder_multilingual.onnx.zip",
"description": "Bot Framework SDK release 4.12 - Multilingual ONNX V1.4 6-layer int per-token intent base model with updated calibration thresholds",
"minSDKVersion": "4.12.0"
},
"pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx": {
"releaseDate": "02/05/2021",
"modelUri": "https://aka.ms/pretrained.20210205.microsoft.dte.00.06.unicoder_multilingual.onnx",
"description": "Bot Framework SDK release 4.12 - Multilingual ONNX V1.4 6-layer per-token intent base model",
"minSDKVersion": "4.12.0"
"pretrained.20210401.microsoft.dte.00.06.bert_example_ner_addon_free.en.onnx": {
"releaseDate": "04/01/2021",
"modelUri": "https://models.botframework.com/models/dte/onnx/pretrained.20210401.microsoft.dte.00.06.bert_example_ner_addon_free.en.onnx.zip",
"description": "(experimental) Bot Framework SDK release 4.14 - English ONNX V1.4 6-layer per-token entity base model",
"minSDKVersion": "4.14.0"
}
}
}