зеркало из https://github.com/microsoft/caffe.git
Change feature binarization threshold to be the mean of all the values
rather than zero in the feature binarization example
This commit is contained in:
Родитель
dd13fa07ca
Коммит
706a926daf
|
@ -1,5 +1,6 @@
|
||||||
// Copyright 2014 kloudkl@github
|
// Copyright 2014 kloudkl@github
|
||||||
|
|
||||||
|
#include <cmath> // for std::signbit
|
||||||
#include <cuda_runtime.h>
|
#include <cuda_runtime.h>
|
||||||
#include <google/protobuf/text_format.h>
|
#include <google/protobuf/text_format.h>
|
||||||
|
|
||||||
|
@ -12,18 +13,8 @@
|
||||||
|
|
||||||
using namespace caffe;
|
using namespace caffe;
|
||||||
|
|
||||||
// TODO: Replace this with caffe_sign after the PR #159 is merged
|
|
||||||
template<typename Dtype>
|
template<typename Dtype>
|
||||||
inline int sign(const Dtype val) {
|
void binarize(const vector<shared_ptr<Blob<Dtype> > >& feature_blob_vector,
|
||||||
return (Dtype(0) < val) - (val < Dtype(0));
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename Dtype>
|
|
||||||
void binarize(const int n, const Dtype* real_valued_feature,
|
|
||||||
Dtype* binary_code);
|
|
||||||
|
|
||||||
template<typename Dtype>
|
|
||||||
void binarize(const shared_ptr<Blob<Dtype> > real_valued_features,
|
|
||||||
shared_ptr<Blob<Dtype> > binary_codes);
|
shared_ptr<Blob<Dtype> > binary_codes);
|
||||||
|
|
||||||
template<typename Dtype>
|
template<typename Dtype>
|
||||||
|
@ -97,61 +88,66 @@ int features_binarization_pipeline(int argc, char** argv) {
|
||||||
|
|
||||||
LOG(ERROR)<< "Binarizing features";
|
LOG(ERROR)<< "Binarizing features";
|
||||||
vector<Blob<Dtype>*> input_vec;
|
vector<Blob<Dtype>*> input_vec;
|
||||||
shared_ptr<Blob<Dtype> > feature_binary_codes(new Blob<Dtype>());
|
vector<shared_ptr<Blob<Dtype> > > feature_blob_vector;
|
||||||
BlobProtoVector blob_proto_vector;
|
|
||||||
int num_features = 0;
|
|
||||||
for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) {
|
for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) {
|
||||||
real_valued_feature_net->Forward(input_vec);
|
real_valued_feature_net->Forward(input_vec);
|
||||||
const shared_ptr<Blob<Dtype> > feature_blob = real_valued_feature_net
|
const shared_ptr<Blob<Dtype> > feature_blob = real_valued_feature_net
|
||||||
->GetBlob(feature_blob_name);
|
->GetBlob(feature_blob_name);
|
||||||
binarize<Dtype>(feature_blob, feature_binary_codes);
|
feature_blob_vector.push_back(feature_blob);
|
||||||
num_features += feature_binary_codes->num();
|
}
|
||||||
feature_binary_codes->ToProto(blob_proto_vector.add_blobs());
|
shared_ptr<Blob<Dtype> > feature_binary_codes(new Blob<Dtype>());
|
||||||
} // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index)
|
binarize<Dtype>(feature_blob_vector, feature_binary_codes);
|
||||||
WriteProtoToBinaryFile(blob_proto_vector,
|
BlobProto blob_proto;
|
||||||
save_binarized_feature_binaryproto_file);
|
feature_binary_codes->ToProto(&blob_proto);
|
||||||
LOG(ERROR)<< "Successfully binarized " << num_features << " features!";
|
WriteProtoToBinaryFile(blob_proto, save_binarized_feature_binaryproto_file);
|
||||||
|
LOG(ERROR)<< "Successfully binarized " << feature_binary_codes->num() << " features!";
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// http://scikit-learn.org/stable/modules/preprocessing.html#feature-binarization
|
||||||
template<typename Dtype>
|
template<typename Dtype>
|
||||||
void binarize(const int n, const Dtype* real_valued_feature,
|
void binarize(const vector<shared_ptr<Blob<Dtype> > >& feature_blob_vector,
|
||||||
Dtype* binary_codes) {
|
|
||||||
// TODO: more advanced binarization algorithm such as bilinear projection
|
|
||||||
// Yunchao Gong, Sanjiv Kumar, Henry A. Rowley, and Svetlana Lazebnik.
|
|
||||||
// Learning Binary Codes for High-Dimensional Data Using Bilinear Projections.
|
|
||||||
// In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
|
|
||||||
// http://www.unc.edu/~yunchao/bpbc.htm
|
|
||||||
int size_of_code = sizeof(Dtype) * 8;
|
|
||||||
int num_binary_codes = (n + size_of_code - 1) / size_of_code;
|
|
||||||
uint64_t code;
|
|
||||||
int offset;
|
|
||||||
int count = 0;
|
|
||||||
for (int i = 0; i < num_binary_codes; ++i) {
|
|
||||||
offset = i * size_of_code;
|
|
||||||
int j = 0;
|
|
||||||
code = 0;
|
|
||||||
for (; j < size_of_code && count++ < n; ++j) {
|
|
||||||
code |= sign(real_valued_feature[offset + j]);
|
|
||||||
code << 1;
|
|
||||||
}
|
|
||||||
code << (size_of_code - j);
|
|
||||||
binary_codes[i] = static_cast<Dtype>(code);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename Dtype>
|
|
||||||
void binarize(const shared_ptr<Blob<Dtype> > real_valued_features,
|
|
||||||
shared_ptr<Blob<Dtype> > binary_codes) {
|
shared_ptr<Blob<Dtype> > binary_codes) {
|
||||||
int num = real_valued_features->num();
|
CHECK_GT(feature_blob_vector.size(), 0);
|
||||||
int dim = real_valued_features->count() / num;
|
Dtype sum;
|
||||||
int size_of_code = sizeof(Dtype) * 8;
|
size_t count = 0;
|
||||||
binary_codes->Reshape(num, (dim + size_of_code - 1) / size_of_code, 1, 1);
|
size_t num_features = 0;
|
||||||
const Dtype* real_valued_features_data = real_valued_features->cpu_data();
|
for (int i = 0; i < feature_blob_vector.size(); ++i) {
|
||||||
Dtype* binary_codes_data = binary_codes->mutable_cpu_data();
|
num_features += feature_blob_vector[i]->num();
|
||||||
for (int n = 0; n < num; ++n) {
|
const Dtype* data = feature_blob_vector[i]->cpu_data();
|
||||||
binarize<Dtype>(dim,
|
for (int j = 0; j < feature_blob_vector[i]->count(); ++j) {
|
||||||
real_valued_features_data + real_valued_features->offset(n),
|
sum += data[j];
|
||||||
binary_codes_data + binary_codes->offset(n));
|
++count;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
Dtype mean = sum / count;
|
||||||
|
int dim = feature_blob_vector[0]->count() / feature_blob_vector[0]->num();
|
||||||
|
int size_of_code = sizeof(Dtype) * 8;
|
||||||
|
binary_codes->Reshape(num_features, (dim + size_of_code - 1) / size_of_code,
|
||||||
|
1, 1);
|
||||||
|
Dtype* binary_data = binary_codes->mutable_cpu_data();
|
||||||
|
int offset;
|
||||||
|
uint64_t code;
|
||||||
|
for (int i = 0; i < feature_blob_vector.size(); ++i) {
|
||||||
|
const Dtype* data = feature_blob_vector[i]->cpu_data();
|
||||||
|
for (int j = 0; j < feature_blob_vector[i]->num(); ++j) {
|
||||||
|
offset = j * dim;
|
||||||
|
code = 0;
|
||||||
|
int k;
|
||||||
|
for (k = 0; k < dim;) {
|
||||||
|
code |= std::signbit(mean - data[k]);
|
||||||
|
++k;
|
||||||
|
if (k % size_of_code == 0) {
|
||||||
|
binary_data[(k + size_of_code - 1) / size_of_code] = code;
|
||||||
|
code = 0;
|
||||||
|
} else {
|
||||||
|
code <<= 1;
|
||||||
|
}
|
||||||
|
} // for k
|
||||||
|
if (k % size_of_code != 0) {
|
||||||
|
code <<= (size_of_code - 1 - k % size_of_code);
|
||||||
|
binary_data[(k + size_of_code - 1) / size_of_code] = code;
|
||||||
|
}
|
||||||
|
} // for j
|
||||||
|
} // for i
|
||||||
}
|
}
|
||||||
|
|
Загрузка…
Ссылка в новой задаче