Change feature binarization threshold to be the mean of all the values

rather than zero in the feature binarization example
This commit is contained in:
Kai Li 2014-02-26 06:51:32 +08:00
Родитель dd13fa07ca
Коммит 706a926daf
1 изменённых файлов: 54 добавлений и 58 удалений

Просмотреть файл

@ -1,5 +1,6 @@
// Copyright 2014 kloudkl@github
#include <cmath> // for std::signbit
#include <cuda_runtime.h>
#include <google/protobuf/text_format.h>
@ -12,18 +13,8 @@
using namespace caffe;
// TODO: Replace this with caffe_sign after the PR #159 is merged
template<typename Dtype>
inline int sign(const Dtype val) {
return (Dtype(0) < val) - (val < Dtype(0));
}
template<typename Dtype>
void binarize(const int n, const Dtype* real_valued_feature,
Dtype* binary_code);
template<typename Dtype>
void binarize(const shared_ptr<Blob<Dtype> > real_valued_features,
void binarize(const vector<shared_ptr<Blob<Dtype> > >& feature_blob_vector,
shared_ptr<Blob<Dtype> > binary_codes);
template<typename Dtype>
@ -97,61 +88,66 @@ int features_binarization_pipeline(int argc, char** argv) {
LOG(ERROR)<< "Binarizing features";
vector<Blob<Dtype>*> input_vec;
shared_ptr<Blob<Dtype> > feature_binary_codes(new Blob<Dtype>());
BlobProtoVector blob_proto_vector;
int num_features = 0;
vector<shared_ptr<Blob<Dtype> > > feature_blob_vector;
for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) {
real_valued_feature_net->Forward(input_vec);
const shared_ptr<Blob<Dtype> > feature_blob = real_valued_feature_net
->GetBlob(feature_blob_name);
binarize<Dtype>(feature_blob, feature_binary_codes);
num_features += feature_binary_codes->num();
feature_binary_codes->ToProto(blob_proto_vector.add_blobs());
} // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index)
WriteProtoToBinaryFile(blob_proto_vector,
save_binarized_feature_binaryproto_file);
LOG(ERROR)<< "Successfully binarized " << num_features << " features!";
feature_blob_vector.push_back(feature_blob);
}
shared_ptr<Blob<Dtype> > feature_binary_codes(new Blob<Dtype>());
binarize<Dtype>(feature_blob_vector, feature_binary_codes);
BlobProto blob_proto;
feature_binary_codes->ToProto(&blob_proto);
WriteProtoToBinaryFile(blob_proto, save_binarized_feature_binaryproto_file);
LOG(ERROR)<< "Successfully binarized " << feature_binary_codes->num() << " features!";
return 0;
}
// http://scikit-learn.org/stable/modules/preprocessing.html#feature-binarization
template<typename Dtype>
void binarize(const int n, const Dtype* real_valued_feature,
Dtype* binary_codes) {
// TODO: more advanced binarization algorithm such as bilinear projection
// Yunchao Gong, Sanjiv Kumar, Henry A. Rowley, and Svetlana Lazebnik.
// Learning Binary Codes for High-Dimensional Data Using Bilinear Projections.
// In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
// http://www.unc.edu/~yunchao/bpbc.htm
int size_of_code = sizeof(Dtype) * 8;
int num_binary_codes = (n + size_of_code - 1) / size_of_code;
uint64_t code;
int offset;
int count = 0;
for (int i = 0; i < num_binary_codes; ++i) {
offset = i * size_of_code;
int j = 0;
code = 0;
for (; j < size_of_code && count++ < n; ++j) {
code |= sign(real_valued_feature[offset + j]);
code << 1;
}
code << (size_of_code - j);
binary_codes[i] = static_cast<Dtype>(code);
}
}
template<typename Dtype>
void binarize(const shared_ptr<Blob<Dtype> > real_valued_features,
void binarize(const vector<shared_ptr<Blob<Dtype> > >& feature_blob_vector,
shared_ptr<Blob<Dtype> > binary_codes) {
int num = real_valued_features->num();
int dim = real_valued_features->count() / num;
int size_of_code = sizeof(Dtype) * 8;
binary_codes->Reshape(num, (dim + size_of_code - 1) / size_of_code, 1, 1);
const Dtype* real_valued_features_data = real_valued_features->cpu_data();
Dtype* binary_codes_data = binary_codes->mutable_cpu_data();
for (int n = 0; n < num; ++n) {
binarize<Dtype>(dim,
real_valued_features_data + real_valued_features->offset(n),
binary_codes_data + binary_codes->offset(n));
CHECK_GT(feature_blob_vector.size(), 0);
Dtype sum;
size_t count = 0;
size_t num_features = 0;
for (int i = 0; i < feature_blob_vector.size(); ++i) {
num_features += feature_blob_vector[i]->num();
const Dtype* data = feature_blob_vector[i]->cpu_data();
for (int j = 0; j < feature_blob_vector[i]->count(); ++j) {
sum += data[j];
++count;
}
}
Dtype mean = sum / count;
int dim = feature_blob_vector[0]->count() / feature_blob_vector[0]->num();
int size_of_code = sizeof(Dtype) * 8;
binary_codes->Reshape(num_features, (dim + size_of_code - 1) / size_of_code,
1, 1);
Dtype* binary_data = binary_codes->mutable_cpu_data();
int offset;
uint64_t code;
for (int i = 0; i < feature_blob_vector.size(); ++i) {
const Dtype* data = feature_blob_vector[i]->cpu_data();
for (int j = 0; j < feature_blob_vector[i]->num(); ++j) {
offset = j * dim;
code = 0;
int k;
for (k = 0; k < dim;) {
code |= std::signbit(mean - data[k]);
++k;
if (k % size_of_code == 0) {
binary_data[(k + size_of_code - 1) / size_of_code] = code;
code = 0;
} else {
code <<= 1;
}
} // for k
if (k % size_of_code != 0) {
code <<= (size_of_code - 1 - k % size_of_code);
binary_data[(k + size_of_code - 1) / size_of_code] = code;
}
} // for j
} // for i
}