зеркало из https://github.com/microsoft/caffe.git
This commit is contained in:
Родитель
22f45e67ab
Коммит
814c729477
|
@ -45,6 +45,25 @@ class ReLULayer : public NeuronLayer<Dtype> {
|
|||
};
|
||||
|
||||
|
||||
template <typename Dtype>
|
||||
class BNLLLayer : public NeuronLayer<Dtype> {
|
||||
public:
|
||||
explicit BNLLLayer(const LayerParameter& param)
|
||||
: NeuronLayer<Dtype>(param) {}
|
||||
|
||||
protected:
|
||||
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
|
||||
vector<Blob<Dtype>*>* top);
|
||||
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
|
||||
vector<Blob<Dtype>*>* top);
|
||||
|
||||
virtual Dtype Backward_cpu(const vector<Blob<Dtype>*>& top,
|
||||
const bool propagate_down, vector<Blob<Dtype>*>* bottom);
|
||||
virtual Dtype Backward_gpu(const vector<Blob<Dtype>*>& top,
|
||||
const bool propagate_down, vector<Blob<Dtype>*>* bottom);
|
||||
};
|
||||
|
||||
|
||||
template <typename Dtype>
|
||||
class DropoutLayer : public NeuronLayer<Dtype> {
|
||||
public:
|
||||
|
|
|
@ -21,6 +21,8 @@ Layer<Dtype>* GetLayer(const LayerParameter& param) {
|
|||
const std::string& type = param.type();
|
||||
if (type == "accuracy") {
|
||||
return new AccuracyLayer<Dtype>(param);
|
||||
} else if (type == "bnll") {
|
||||
return new BNLLLayer<Dtype>(param);
|
||||
} else if (type == "conv") {
|
||||
return new ConvolutionLayer<Dtype>(param);
|
||||
} else if (type == "data") {
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
// Copyright 2013 Yangqing Jia
|
||||
|
||||
#include "caffe/layer.hpp"
|
||||
#include "caffe/vision_layers.hpp"
|
||||
#include <algorithm>
|
||||
|
||||
using std::max;
|
||||
|
||||
namespace caffe {
|
||||
|
||||
const float kBNLL_THRESHOLD = 50.;
|
||||
|
||||
template <typename Dtype>
|
||||
void BNLLLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
|
||||
vector<Blob<Dtype>*>* top) {
|
||||
const Dtype* bottom_data = bottom[0]->cpu_data();
|
||||
Dtype* top_data = (*top)[0]->mutable_cpu_data();
|
||||
const int count = bottom[0]->count();
|
||||
for (int i = 0; i < count; ++i) {
|
||||
top_data[i] = log(1. + exp(min(bottom_data[i], Dtype(kBNLL_THRESHOLD))));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Dtype>
|
||||
Dtype BNLLLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
|
||||
const bool propagate_down,
|
||||
vector<Blob<Dtype>*>* bottom) {
|
||||
if (propagate_down) {
|
||||
const Dtype* bottom_data = (*bottom)[0]->cpu_data();
|
||||
const Dtype* top_diff = top[0]->cpu_diff();
|
||||
Dtype* bottom_diff = (*bottom)[0]->mutable_cpu_diff();
|
||||
const int count = (*bottom)[0]->count();
|
||||
for (int i = 0; i < count; ++i) {
|
||||
Dtype expval = exp(min(bottom_data[index], Dtype(kBNLL_THRESHOLD)));
|
||||
bottom_diff[index] = top_diff[index] * expval / (expval + 1.);
|
||||
}
|
||||
}
|
||||
return Dtype(0);
|
||||
}
|
||||
|
||||
template <typename Dtype>
|
||||
__global__ void BNLLForward(const int n, const Dtype* in, Dtype* out) {
|
||||
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (index < n) {
|
||||
out[index] = log(1. + exp(min(in[index], Dtype(kBNLL_THRESHOLD)));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Dtype>
|
||||
void BNLLLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
|
||||
vector<Blob<Dtype>*>* top) {
|
||||
const Dtype* bottom_data = bottom[0]->gpu_data();
|
||||
Dtype* top_data = (*top)[0]->mutable_gpu_data();
|
||||
const int count = bottom[0]->count();
|
||||
BNLLForward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(
|
||||
count, bottom_data, top_data);
|
||||
CUDA_POST_KERNEL_CHECK;
|
||||
}
|
||||
|
||||
template <typename Dtype>
|
||||
__global__ void BNLLBackward(const int n, const Dtype* in_diff,
|
||||
const Dtype* in_data, Dtype* out_diff) {
|
||||
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (index < n) {
|
||||
Dtype expval = exp(min(in_data[index], Dtype(kBNLL_THRESHOLD)));
|
||||
out_diff[index] = in_diff[index] * expval / (expval + 1.);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Dtype>
|
||||
Dtype BNLLLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
|
||||
const bool propagate_down,
|
||||
vector<Blob<Dtype>*>* bottom) {
|
||||
if (propagate_down) {
|
||||
const Dtype* bottom_data = (*bottom)[0]->gpu_data();
|
||||
const Dtype* top_diff = top[0]->gpu_diff();
|
||||
Dtype* bottom_diff = (*bottom)[0]->mutable_gpu_diff();
|
||||
const int count = (*bottom)[0]->count();
|
||||
BNLLBackward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(
|
||||
count, top_diff, bottom_data, bottom_diff);
|
||||
CUDA_POST_KERNEL_CHECK;
|
||||
}
|
||||
return Dtype(0);
|
||||
}
|
||||
|
||||
INSTANTIATE_CLASS(BNLLLayer);
|
||||
|
||||
|
||||
} // namespace caffe
|
Загрузка…
Ссылка в новой задаче