Extend Crop to N-D, changed CropParameter.

This commit is contained in:
max argus 2016-01-19 18:35:04 +00:00
Родитель 64e78bdc76
Коммит 952fd17e52
4 изменённых файлов: 210 добавлений и 52 удалений

Просмотреть файл

@ -41,9 +41,27 @@ class CropLayer : public Layer<Dtype> {
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
int crop_h_, crop_w_;
};
vector<int> offsets;
private:
void crop_copy(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top,
const vector<int>& offsets,
vector<int> indices,
int cur_dim,
const Dtype* src_data,
Dtype* dest_data,
bool is_forward);
void crop_copy_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top,
const vector<int>& offsets,
vector<int> indices,
int cur_dim,
const Dtype* src_data,
Dtype* dest_data,
bool is_forward);
};
} // namespace caffe
#endif // CAFFE_CROP_LAYER_HPP_

Просмотреть файл

@ -1,8 +1,10 @@
#include <algorithm>
#include <functional>
#include <map>
#include <set>
#include <vector>
#include "caffe/layer.hpp"
#include "caffe/layers/crop_layer.hpp"
#include "caffe/net.hpp"
@ -13,40 +15,108 @@ namespace caffe {
template <typename Dtype>
void CropLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const CropParameter& param = this->layer_param_.crop_param();
CHECK_EQ(bottom.size(), 2) << "Wrong number of bottom blobs.";
CHECK_EQ(bottom[0]->num_axes(), 4) << "Only works with 4D blobs.";
CHECK_EQ(bottom[1]->num_axes(), 4) << "Only works with 4D blobs.";
crop_h_ = param.offset_height();
crop_w_ = param.offset_width();
// parameter setup moved to Reshape because it depends on size.
}
template <typename Dtype>
void CropLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
// Check that the image we are cropping minus the margin is bigger than the
// destination image.
CHECK_GT(bottom[0]->height()-crop_h_, bottom[1]->height())
<< "invalid offset";
CHECK_GT(bottom[0]->width()-crop_w_, bottom[1]->width()) << "invalid offset";
top[0]->Reshape(bottom[0]->num(), bottom[0]->channels(), bottom[1]->height(),
bottom[1]->width());
const CropParameter& param = this->layer_param_.crop_param();
// bottom[0] supplies the data
// bottom[1] supplies the size
int input_dim = bottom[0]->num_axes();
CHECK_LT(param.axis(), input_dim) << "crop axis bigger than input dim";
// initialize all offsets to 0
offsets = vector<int>(input_dim, 0);
// initialize new shape to bottom[0]
vector<int> new_shape(bottom[0]->shape());
if (param.offset_size() > 1) {
// the number of crop values specified must be equal to the number
// of dimensions following axis
CHECK_EQ(param.axis() + param.offset_size(), input_dim)
<< "number of crop values specified must be equal to the number of "
<< "dimensions following axis.";
}
// apply crops
for (int i = 0; i < input_dim; ++i) {
int crop_offset = 0;
int new_size = bottom[0]->shape(i);
if (i >= param.axis() && param.offset_size() == 1) {
// if only one crop value is supplied, crop all dimensions after axis
// by this crop value
crop_offset = param.offset(0);
new_size = bottom[1]->shape(i);
} else if (i >= param.axis() && param.offset_size() > 1) {
// crop values specified must be equal to the number of dimensions
// following axis
crop_offset = param.offset(i - param.axis());
new_size = bottom[1]->shape(i);
}
// Check that the image we are cropping minus the margin is bigger
// than the destination image.
CHECK_GE(bottom[0]->shape(i) - crop_offset,
bottom[1]->shape(i))
<< "invalid crop parameters in dimension: " << i;
// Now set new size and offsets
new_shape[i] = new_size;
offsets[i] = crop_offset;
}
top[0]->Reshape(new_shape);
}
// recursive copy function
template <typename Dtype>
void CropLayer<Dtype>::crop_copy(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top,
const vector<int>& offsets,
vector<int> indices,
int cur_dim,
const Dtype* src_data,
Dtype* dest_data,
bool is_forward) {
if (cur_dim + 1 < top[0]->num_axes()) {
// We are not yet at the final dimension, call copy recursivley
for (int i = 0; i < top[0]->shape(cur_dim); ++i) {
indices[cur_dim] = i;
crop_copy(bottom, top, offsets, indices, cur_dim+1,
src_data, dest_data, is_forward);
}
} else {
// We are at the last dimensions, which is stored continously in memory
for (int i = 0; i < top[0]->shape(cur_dim); ++i) {
// prepare index vector reduced(red) and with offsets(off)
std::vector<int> ind_red(cur_dim, 0);
std::vector<int> ind_off(cur_dim+1, 0);
for (int j = 0; j < cur_dim; ++j) {
ind_red[j] = indices[j];
ind_off[j] = indices[j] + offsets[j];
}
ind_off[cur_dim] = offsets[cur_dim];
// do the copy
if (is_forward) {
caffe_copy(top[0]->shape(cur_dim),
src_data + bottom[0]->offset(ind_off),
dest_data + top[0]->offset(ind_red));
} else {
// in the backwards pass the src_data is top_diff
// and the dest_data is bottom_diff
caffe_copy(top[0]->shape(cur_dim),
src_data + top[0]->offset(ind_red),
dest_data + bottom[0]->offset(ind_off));
}
}
}
}
template <typename Dtype>
void CropLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
std::vector<int> indices(top[0]->num_axes(), 0);
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
for (int n = 0; n < top[0]->num(); ++n) {
for (int c = 0; c < top[0]->channels(); ++c) {
for (int h = 0; h < top[0]->height(); ++h) {
caffe_copy(top[0]->width(),
bottom_data + bottom[0]->offset(n, c, crop_h_ + h, crop_w_),
top_data + top[0]->offset(n, c, h));
}
}
}
crop_copy(bottom, top, offsets, indices, 0, bottom_data, top_data, true);
}
template <typename Dtype>
@ -54,17 +124,11 @@ void CropLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff = top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
if (propagate_down[0]) {
caffe_set(bottom[0]->count(), static_cast<Dtype>(0), bottom_diff);
for (int n = 0; n < top[0]->num(); ++n) {
for (int c = 0; c < top[0]->channels(); ++c) {
for (int h = 0; h < top[0]->height(); ++h) {
caffe_copy(top[0]->width(),
top_diff + top[0]->offset(n, c, h),
bottom_diff + bottom[0]->offset(n, c, crop_h_ + h, crop_w_));
}
}
}
std::vector<int> indices(top[0]->num_axes(), 0);
crop_copy(bottom, top, offsets, indices, 0, top_diff, bottom_diff, false);
}
}

Просмотреть файл

@ -22,19 +22,90 @@ __global__ void copy_kernel(const int n, const int height, const int width,
}
}
// recursive copy function, this function is similar to crop_copy but loops
// over all but the last two dimensions. It is implemented this way to allow
// for ND cropping while still relying on a CUDA kernel for the innermost
// two dimensions for performance reasons.
// An alternative way to implement ND cropping relying more on the kernel
// would require passing offsets to the kernel, which is a bit problematic
// because it is of variable length. Since in the standard (N,C,W,H) case
// N,C are usually not cropped a speedup could be achieved by not looping
// the application of the copy_kernel around these dimensions.
template <typename Dtype>
void CropLayer<Dtype>::crop_copy_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top,
const vector<int>& offsets,
vector<int> indices,
int cur_dim,
const Dtype* src_data,
Dtype* dest_data,
bool is_forward) {
if (cur_dim + 2 < top[0]->num_axes()) {
// We are not yet at the final dimension, call copy recursivley
for (int i = 0; i < top[0]->shape(cur_dim); ++i) {
indices[cur_dim] = i;
crop_copy_gpu(bottom, top, offsets, indices, cur_dim+1,
src_data, dest_data, is_forward);
}
} else {
// We are at the last two dimensions, which are stored continously in memory
// With (N,C,H,W)
// (0,1,2,3) cur_dim -> H
// cur_dim+1 -> W
const int lines = top[0]->shape(cur_dim);
const int height = top[0]->shape(cur_dim);
const int width = top[0]->shape(cur_dim+1);
std::vector<int> ind_off(cur_dim+2, 0);
for (int j = 0; j < cur_dim; ++j) {
ind_off[j] = indices[j] + offsets[j];
}
ind_off[cur_dim] = offsets[cur_dim];
ind_off[cur_dim+1] = offsets[cur_dim+1];
// Compute copy strides
const int src_outer_stride =
bottom[0]->shape(cur_dim)*bottom[0]->shape(cur_dim+1);
const int src_inner_stride = bottom[0]->shape(cur_dim+1);
const int dest_outer_stride =
top[0]->shape(cur_dim)*top[0]->shape(cur_dim+1);
const int dest_inner_stride = top[0]->shape(cur_dim+1);
if (is_forward) {
const Dtype* bottom_data = bottom[0]->gpu_data() +
bottom[0]->offset(ind_off);
Dtype* top_data = top[0]->mutable_gpu_data() +
top[0]->offset(indices);
// NOLINT_NEXT_LINE(whitespace/operators)
copy_kernel<<<CAFFE_GET_BLOCKS(lines), CAFFE_CUDA_NUM_THREADS>>>(
lines, height, width,
src_outer_stride, src_inner_stride,
dest_outer_stride, dest_inner_stride,
bottom_data, top_data);
} else {
const Dtype* top_diff = top[0]->gpu_diff() +
top[0]->offset(indices);
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff() +
bottom[0]->offset(ind_off);
// NOLINT_NEXT_LINE(whitespace/operators)
copy_kernel<<<CAFFE_GET_BLOCKS(lines), CAFFE_CUDA_NUM_THREADS>>>(
lines, height, width,
dest_outer_stride, dest_inner_stride,
src_outer_stride, src_inner_stride,
top_diff, bottom_diff);
}
}
}
template <typename Dtype>
void CropLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
std::vector<int> indices(top[0]->num_axes(), 0);
// This works because crop_copy uses caffe_copy which calls cudaMemcpy.
// My intuition is that calling this thousands of times is probably less
// efficient than writing a custom kernel.
const Dtype* bottom_data = bottom[0]->gpu_data();
Dtype* top_data = top[0]->mutable_gpu_data();
const int lines = top[0]->count() / top[0]->width();
// NOLINT_NEXT_LINE(whitespace/operators)
copy_kernel<<<CAFFE_GET_BLOCKS(lines), CAFFE_CUDA_NUM_THREADS>>>(
lines, top[0]->height(), top[0]->width(),
bottom[0]->height() * bottom[0]->width(), bottom[0]->width(),
top[0]->height() * top[0]->width(), top[0]->width(),
bottom_data + bottom[0]->offset(0, 0, crop_h_, crop_w_), top_data);
crop_copy_gpu(bottom, top, offsets, indices, 0, bottom_data, top_data, true);
}
template <typename Dtype>
@ -42,16 +113,12 @@ void CropLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff = top[0]->gpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
const int lines = top[0]->count() / top[0]->width();
if (propagate_down[0]) {
caffe_gpu_set(bottom[0]->count(), static_cast<Dtype>(0), bottom_diff);
// NOLINT_NEXT_LINE(whitespace/operators)
copy_kernel<<<CAFFE_GET_BLOCKS(lines), CAFFE_CUDA_NUM_THREADS>>>(
lines, top[0]->height(), top[0]->width(),
top[0]->height() * top[0]->width(), top[0]->width(),
bottom[0]->height() * bottom[0]->width(), bottom[0]->width(),
top_diff, bottom_diff + bottom[0]->offset(0, 0, crop_h_, crop_w_));
std::vector<int> indices(top[0]->num_axes(), 0);
crop_copy_gpu(bottom, top, offsets, indices, 0, top_diff, bottom_diff,
false);
}
}

Просмотреть файл

@ -600,10 +600,19 @@ message ConvolutionParameter {
}
message CropParameter {
// Assumes standard dimensions: ( N,C,H,W )
// This could possibly be extended to use "optional BlobShape offsets"
optional uint32 offset_height = 1[default = 0];
optional uint32 offset_width = 2[default = 0];
// To crop, elements of the first bottom are selected to fit the dimensions
// of the second, reference bottom. The crop is configured by
// - the crop `axis` to pick the dimensions for cropping
// - the crop `offset` to set the shift for all/each dimension
// to align the cropped bottom with the reference bottom.
// All dimensions up to but excluding `axis` are preserved, while
// the dimensions including and trailing `axis` are cropped.
// If only one `offset` is set, then all dimensions are offset by this amount.
// Otherwise, the number of offsets must equal the number of cropped axes to
// shift the crop in each dimension accordingly.
// Note: standard dimensions are N,C,H,W so the default is a spatial crop.
optional uint32 axis = 1 [default = 2];
repeated uint32 offset = 2;
}
message DataParameter {
@ -680,7 +689,7 @@ message EltwiseParameter {
// Message that stores parameters used by ELULayer
message ELUParameter {
// Described in:
// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
// Deep Network Learning by Exponential Linear Units (ELUs). arXiv
optional float alpha = 1 [default = 1];
}