diff --git a/docs/tutorial/layers.md b/docs/tutorial/layers.md index 036d9adc..733ff96e 100644 --- a/docs/tutorial/layers.md +++ b/docs/tutorial/layers.md @@ -201,12 +201,12 @@ In general, activation / Neuron layers are element-wise operators, taking one bo - `negative_slope` [default 0]: specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0. * Sample (as seen in `./examples/imagenet/imagenet_train_val.prototxt`) - layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" - } + layers { + name: "relu1" + type: RELU + bottom: "conv1" + top: "conv1" + } Given an input value x, The `RELU` layer computes the output as x if x > 0 and negative_slope * x if x <= 0. When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max(x, 0). It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption. @@ -217,12 +217,12 @@ Given an input value x, The `RELU` layer computes the output as x if x > 0 and n * CUDA GPU implementation: `./src/caffe/layers/sigmoid_layer.cu` * Sample (as seen in `./examples/imagenet/mnist_autoencoder.prototxt`) - layers { - name: "encode1neuron" - bottom: "encode1" - top: "encode1neuron" - type: SIGMOID - } + layers { + name: "encode1neuron" + bottom: "encode1" + top: "encode1neuron" + type: SIGMOID + } The `SIGMOID` layer computes the output as sigmoid(x) for each input element x. @@ -233,12 +233,12 @@ The `SIGMOID` layer computes the output as sigmoid(x) for each input element x. * CUDA GPU implementation: `./src/caffe/layers/tanh_layer.cu` * Sample - layers { - name: "layer" - bottom: "in" - top: "out" - type: TANH - } + layers { + name: "layer" + bottom: "in" + top: "out" + type: TANH + } The `TANH` layer computes the output as tanh(x) for each input element x. @@ -249,12 +249,12 @@ The `TANH` layer computes the output as tanh(x) for each input element x. * CUDA GPU implementation: `./src/caffe/layers/absval_layer.cu` * Sample - layers { - name: "layer" - bottom: "in" - top: "out" - type: ABSVAL - } + layers { + name: "layer" + bottom: "in" + top: "out" + type: ABSVAL + } The `ABSVAL` layer computes the output as abs(x) for each input element x. @@ -270,17 +270,17 @@ The `ABSVAL` layer computes the output as abs(x) for each input element x. - `shift` [default 0] * Sample - layers { - name: "layer" - bottom: "in" - top: "out" - type: POWER - power_param { - power: 1 - scale: 1 - shift: 0 - } + layers { + name: "layer" + bottom: "in" + top: "out" + type: POWER + power_param { + power: 1 + scale: 1 + shift: 0 } + } The `POWER` layer computes the output as (shift + scale * x) ^ power for each input element x. @@ -291,12 +291,12 @@ The `POWER` layer computes the output as (shift + scale * x) ^ power for each in * CUDA GPU implementation: `./src/caffe/layers/bnll_layer.cu` * Sample - layers { - name: "layer" - bottom: "in" - top: "out" - type: BNLL - } + layers { + name: "layer" + bottom: "in" + top: "out" + type: BNLL + } The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x. @@ -399,16 +399,16 @@ The `FLATTEN` layer is a utility layer that flattens an input of shape `n * c * - if `concat_dim = 1`: `n_1 * (c_1 + c_2 + ... + c_K) * h * w`, and all input `n_i` should be the same. * Sample - layers { - name: "concat" - bottom: "in1" - bottom: "in2" - top: "out" - type: CONCAT - concat_param { - concat_dim: 1 - } + layers { + name: "concat" + bottom: "in1" + bottom: "in2" + top: "out" + type: CONCAT + concat_param { + concat_dim: 1 } + } The `CONCAT` layer is a utility layer that concatenates its multiple input blobs to one single output blob. Currently, the layer supports concatenation along num or channels only.