зеркало из https://github.com/microsoft/caffe.git
[doc] minor edits to convolution layer in tutorial
This commit is contained in:
Родитель
68849e4aab
Коммит
c099fd8b2e
|
@ -28,12 +28,12 @@ In contrast, other layers (with few exceptions) ignore the spatial structure of
|
||||||
* CUDA GPU implementation: `./src/caffe/layers/convolution_layer.cu`
|
* CUDA GPU implementation: `./src/caffe/layers/convolution_layer.cu`
|
||||||
* Options (`ConvolutionParameter convolution_param`)
|
* Options (`ConvolutionParameter convolution_param`)
|
||||||
- Required: `num_output` (`c_o`), the number of filters
|
- Required: `num_output` (`c_o`), the number of filters
|
||||||
- Required: `kernel_size` or (`kernel_h`, `kernel_w`), specifies height & width of each filter
|
- Required: `kernel_size` (or `kernel_h` and `kernel_w`), specifies height and width of each filter
|
||||||
- Strongly recommended (default `type: 'constant' value: 0`): `weight_filler`
|
- Strongly recommended (default `type: 'constant' value: 0`): `weight_filler`
|
||||||
- Optional (default `true`): `bias_term`, specifies whether to learn and apply a set of additive biases to the filter outputs
|
- Optional (default `true`): `bias_term`, specifies whether to learn and apply a set of additive biases to the filter outputs
|
||||||
- Optional (default 0): `pad` or (`pad_h`, `pad_w`), specifies the number of pixels to (implicitly) add to each side of the input
|
- Optional (default 0): `pad` (or `pad_h` and `pad_w`), specifies the number of pixels to (implicitly) add to each side of the input
|
||||||
- Optional (default 1): `stride` or (`stride_h`, `stride_w`), specifies the intervals at which to apply the filters to the input
|
- Optional (default 1): `stride` (or `stride_h` and `stride_w`), specifies the intervals at which to apply the filters to the input
|
||||||
- Optional (default 1): `group` (g). If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated to g groups separately, and the i-th output group channels will be only connected to the i-th input group channels.
|
- Optional (default 1): `group` (g). If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the $$i$$th output group channels will be only connected to the $$i$$th input group channels.
|
||||||
* Input
|
* Input
|
||||||
- `n * c_i * h_i * w_i`
|
- `n * c_i * h_i * w_i`
|
||||||
* Output
|
* Output
|
||||||
|
|
Загрузка…
Ссылка в новой задаче