Merge pull request #3570 from BlGene/crop-nd

ND Crop layer
This commit is contained in:
Evan Shelhamer 2016-03-05 11:34:50 -08:00
Родитель 6a0b98768d e03a2873a0
Коммит ca1ce4a907
5 изменённых файлов: 627 добавлений и 2 удалений

Просмотреть файл

@ -0,0 +1,67 @@
#ifndef CAFFE_CROP_LAYER_HPP_
#define CAFFE_CROP_LAYER_HPP_
#include <utility>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Takes a Blob and crop it, to the shape specified by the second input
* Blob, across all dimensions after the specified axis.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class CropLayer : public Layer<Dtype> {
public:
explicit CropLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "Crop"; }
virtual inline int ExactNumBottomBlobs() const { return 2; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
vector<int> offsets;
private:
void crop_copy(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top,
const vector<int>& offsets,
vector<int> indices,
int cur_dim,
const Dtype* src_data,
Dtype* dest_data,
bool is_forward);
void crop_copy_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top,
const vector<int>& offsets,
vector<int> indices,
int cur_dim,
const Dtype* src_data,
Dtype* dest_data,
bool is_forward);
};
} // namespace caffe
#endif // CAFFE_CROP_LAYER_HPP_

Просмотреть файл

@ -0,0 +1,150 @@
#include <algorithm>
#include <functional>
#include <map>
#include <set>
#include <vector>
#include "caffe/layer.hpp"
#include "caffe/layers/crop_layer.hpp"
#include "caffe/net.hpp"
namespace caffe {
template <typename Dtype>
void CropLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
// All logic that depends only on the number of dimensions is here,
// the rest is in Reshape because it depends on Blob size.
// bottom[0] supplies the data
// bottom[1] supplies the size
const CropParameter& param = this->layer_param_.crop_param();
CHECK_EQ(bottom.size(), 2) << "Wrong number of bottom blobs.";
int input_dim = bottom[0]->num_axes();
const int start_axis = bottom[0]->CanonicalAxisIndex(param.axis());
CHECK_LT(start_axis, input_dim) << "crop axis bigger than input dim";
if (param.offset_size() > 1) {
// the number of crop values specified must be equal to the number
// of dimensions following axis
CHECK_EQ(start_axis + param.offset_size(), input_dim)
<< "number of offset values specified must be equal to the number of "
<< "dimensions following axis.";
}
}
template <typename Dtype>
void CropLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const CropParameter& param = this->layer_param_.crop_param();
int input_dim = bottom[0]->num_axes();
const int start_axis = bottom[0]->CanonicalAxisIndex(param.axis());
// initialize all offsets to 0
offsets = vector<int>(input_dim, 0);
// initialize new shape to bottom[0]
vector<int> new_shape(bottom[0]->shape());
// apply crops
for (int i = 0; i < input_dim; ++i) {
int crop_offset = 0;
int new_size = bottom[0]->shape(i);
if (i >= start_axis) {
new_size = bottom[1]->shape(i);
if (param.offset_size() == 1) {
// if only one crop value is supplied, crop all dimensions after axis
// by this crop value
crop_offset = param.offset(0);
} else if (param.offset_size() > 1) {
// crop values specified must be equal to the number of dimensions
// following axis
crop_offset = param.offset(i - start_axis);
}
}
// Check that the image we are cropping minus the margin is bigger
// than the destination image.
CHECK_GE(bottom[0]->shape(i) - crop_offset,
bottom[1]->shape(i))
<< "invalid crop parameters in dimension: " << i;
// Now set new size and offsets
new_shape[i] = new_size;
offsets[i] = crop_offset;
}
top[0]->Reshape(new_shape);
}
// recursive copy function
template <typename Dtype>
void CropLayer<Dtype>::crop_copy(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top,
const vector<int>& offsets,
vector<int> indices,
int cur_dim,
const Dtype* src_data,
Dtype* dest_data,
bool is_forward) {
if (cur_dim + 1 < top[0]->num_axes()) {
// We are not yet at the final dimension, call copy recursively
for (int i = 0; i < top[0]->shape(cur_dim); ++i) {
indices[cur_dim] = i;
crop_copy(bottom, top, offsets, indices, cur_dim+1,
src_data, dest_data, is_forward);
}
} else {
// We are at the last dimensions, which is stored continously in memory
for (int i = 0; i < top[0]->shape(cur_dim); ++i) {
// prepare index vector reduced(red) and with offsets(off)
std::vector<int> ind_red(cur_dim, 0);
std::vector<int> ind_off(cur_dim+1, 0);
for (int j = 0; j < cur_dim; ++j) {
ind_red[j] = indices[j];
ind_off[j] = indices[j] + offsets[j];
}
ind_off[cur_dim] = offsets[cur_dim];
// do the copy
if (is_forward) {
caffe_copy(top[0]->shape(cur_dim),
src_data + bottom[0]->offset(ind_off),
dest_data + top[0]->offset(ind_red));
} else {
// in the backwards pass the src_data is top_diff
// and the dest_data is bottom_diff
caffe_copy(top[0]->shape(cur_dim),
src_data + top[0]->offset(ind_red),
dest_data + bottom[0]->offset(ind_off));
}
}
}
}
template <typename Dtype>
void CropLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
std::vector<int> indices(top[0]->num_axes(), 0);
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
crop_copy(bottom, top, offsets, indices, 0, bottom_data, top_data, true);
}
template <typename Dtype>
void CropLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff = top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
if (propagate_down[0]) {
caffe_set(bottom[0]->count(), static_cast<Dtype>(0), bottom_diff);
std::vector<int> indices(top[0]->num_axes(), 0);
crop_copy(bottom, top, offsets, indices, 0, top_diff, bottom_diff, false);
}
}
#ifdef CPU_ONLY
STUB_GPU(CropLayer);
#endif
INSTANTIATE_CLASS(CropLayer);
REGISTER_LAYER_CLASS(Crop);
} // namespace caffe

Просмотреть файл

@ -0,0 +1,124 @@
#include <vector>
#include "caffe/layers/crop_layer.hpp"
namespace caffe {
// Copy (one line per thread) from one array to another, with arbitrary
// strides in the last two dimensions.
template <typename Dtype>
__global__ void copy_kernel(const int n, const int height, const int width,
const int src_outer_stride, const int src_inner_stride,
const int dest_outer_stride, const int dest_inner_stride,
const Dtype* src, Dtype* dest) {
CUDA_KERNEL_LOOP(index, n) {
int src_start = index / height * src_outer_stride
+ index % height * src_inner_stride;
int dest_start = index / height * dest_outer_stride
+ index % height * dest_inner_stride;
for (int i = 0; i < width; ++i) {
dest[dest_start + i] = src[src_start + i];
}
}
}
// recursive copy function, this function is similar to crop_copy but loops
// over all but the last two dimensions. It is implemented this way to allow
// for ND cropping while still relying on a CUDA kernel for the innermost
// two dimensions for performance reasons.
// An alternative way to implement ND cropping relying more on the kernel
// would require passing offsets to the kernel, which is a bit problematic
// because it is of variable length. Since in the standard (N,C,W,H) case
// N,C are usually not cropped a speedup could be achieved by not looping
// the application of the copy_kernel around these dimensions.
template <typename Dtype>
void CropLayer<Dtype>::crop_copy_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top,
const vector<int>& offsets,
vector<int> indices,
int cur_dim,
const Dtype* src_data,
Dtype* dest_data,
bool is_forward) {
if (cur_dim + 2 < top[0]->num_axes()) {
// We are not yet at the final dimension, call copy recursivley
for (int i = 0; i < top[0]->shape(cur_dim); ++i) {
indices[cur_dim] = i;
crop_copy_gpu(bottom, top, offsets, indices, cur_dim+1,
src_data, dest_data, is_forward);
}
} else {
// We are at the last two dimensions, which are stored continously in memory
// With (N,C,H,W)
// (0,1,2,3) cur_dim -> H
// cur_dim+1 -> W
const int lines = top[0]->shape(cur_dim);
const int height = top[0]->shape(cur_dim);
const int width = top[0]->shape(cur_dim+1);
std::vector<int> ind_off(cur_dim+2, 0);
for (int j = 0; j < cur_dim; ++j) {
ind_off[j] = indices[j] + offsets[j];
}
ind_off[cur_dim] = offsets[cur_dim];
ind_off[cur_dim+1] = offsets[cur_dim+1];
// Compute copy strides
const int src_outer_stride =
bottom[0]->shape(cur_dim)*bottom[0]->shape(cur_dim+1);
const int src_inner_stride = bottom[0]->shape(cur_dim+1);
const int dest_outer_stride =
top[0]->shape(cur_dim)*top[0]->shape(cur_dim+1);
const int dest_inner_stride = top[0]->shape(cur_dim+1);
if (is_forward) {
const Dtype* bottom_data = bottom[0]->gpu_data() +
bottom[0]->offset(ind_off);
Dtype* top_data = top[0]->mutable_gpu_data() +
top[0]->offset(indices);
// NOLINT_NEXT_LINE(whitespace/operators)
copy_kernel<<<CAFFE_GET_BLOCKS(lines), CAFFE_CUDA_NUM_THREADS>>>(
lines, height, width,
src_outer_stride, src_inner_stride,
dest_outer_stride, dest_inner_stride,
bottom_data, top_data);
} else {
const Dtype* top_diff = top[0]->gpu_diff() +
top[0]->offset(indices);
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff() +
bottom[0]->offset(ind_off);
// NOLINT_NEXT_LINE(whitespace/operators)
copy_kernel<<<CAFFE_GET_BLOCKS(lines), CAFFE_CUDA_NUM_THREADS>>>(
lines, height, width,
dest_outer_stride, dest_inner_stride,
src_outer_stride, src_inner_stride,
top_diff, bottom_diff);
}
}
}
template <typename Dtype>
void CropLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
std::vector<int> indices(top[0]->num_axes(), 0);
const Dtype* bottom_data = bottom[0]->gpu_data();
Dtype* top_data = top[0]->mutable_gpu_data();
crop_copy_gpu(bottom, top, offsets, indices, 0, bottom_data, top_data, true);
}
template <typename Dtype>
void CropLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff = top[0]->gpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
if (propagate_down[0]) {
caffe_gpu_set(bottom[0]->count(), static_cast<Dtype>(0), bottom_diff);
std::vector<int> indices(top[0]->num_axes(), 0);
crop_copy_gpu(bottom, top, offsets, indices, 0, top_diff, bottom_diff,
false);
}
}
INSTANTIATE_LAYER_GPU_FUNCS(CropLayer);
} // namespace caffe

Просмотреть файл

@ -306,7 +306,7 @@ message ParamSpec {
// NOTE
// Update the next available ID when you add a new LayerParameter field.
//
// LayerParameter next available layer-specific ID: 144 (last added: input_param)
// LayerParameter next available layer-specific ID: 145 (last added: crop_param)
message LayerParameter {
optional string name = 1; // the layer name
optional string type = 2; // the layer type
@ -360,6 +360,7 @@ message LayerParameter {
optional ConcatParameter concat_param = 104;
optional ContrastiveLossParameter contrastive_loss_param = 105;
optional ConvolutionParameter convolution_param = 106;
optional CropParameter crop_param = 144;
optional DataParameter data_param = 107;
optional DropoutParameter dropout_param = 108;
optional DummyDataParameter dummy_data_param = 109;
@ -598,6 +599,24 @@ message ConvolutionParameter {
optional bool force_nd_im2col = 17 [default = false];
}
message CropParameter {
// To crop, elements of the first bottom are selected to fit the dimensions
// of the second, reference bottom. The crop is configured by
// - the crop `axis` to pick the dimensions for cropping
// - the crop `offset` to set the shift for all/each dimension
// to align the cropped bottom with the reference bottom.
// All dimensions up to but excluding `axis` are preserved, while
// the dimensions including and trailing `axis` are cropped.
// If only one `offset` is set, then all dimensions are offset by this amount.
// Otherwise, the number of offsets must equal the number of cropped axes to
// shift the crop in each dimension accordingly.
// Note: standard dimensions are N,C,H,W so the default is a spatial crop,
// and `axis` may be negative to index from the end (e.g., -1 for the last
// axis).
optional int32 axis = 1 [default = 2];
repeated uint32 offset = 2;
}
message DataParameter {
enum DB {
LEVELDB = 0;
@ -672,7 +691,7 @@ message EltwiseParameter {
// Message that stores parameters used by ELULayer
message ELUParameter {
// Described in:
// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
// Deep Network Learning by Exponential Linear Units (ELUs). arXiv
optional float alpha = 1 [default = 1];
}

Просмотреть файл

@ -0,0 +1,265 @@
#include <vector>
#include "gtest/gtest.h"
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/filler.hpp"
#include "caffe/layers/crop_layer.hpp"
#include "caffe/test/test_caffe_main.hpp"
#include "caffe/test/test_gradient_check_util.hpp"
namespace caffe {
template <typename TypeParam>
class CropLayerTest : public MultiDeviceTest<TypeParam> {
typedef typename TypeParam::Dtype Dtype;
protected:
CropLayerTest()
: blob_bottom_0_(new Blob<Dtype>(2, 4, 5, 4)),
blob_bottom_1_(new Blob<Dtype>(2, 3, 4, 2)),
blob_top_(new Blob<Dtype>()) {}
virtual void SetUp() {
// fill the values
FillerParameter filler_param;
GaussianFiller<Dtype> filler(filler_param);
filler.Fill(this->blob_bottom_0_);
filler.Fill(this->blob_bottom_1_);
blob_bottom_vec_.push_back(blob_bottom_0_);
blob_bottom_vec_.push_back(blob_bottom_1_);
blob_top_vec_.push_back(blob_top_);
}
virtual ~CropLayerTest() {
delete blob_bottom_0_; delete blob_bottom_1_;
delete blob_top_;
}
Blob<Dtype>* const blob_bottom_0_;
Blob<Dtype>* const blob_bottom_1_;
Blob<Dtype>* const blob_top_;
vector<Blob<Dtype>*> blob_bottom_vec_;
vector<Blob<Dtype>*> blob_top_vec_;
};
TYPED_TEST_CASE(CropLayerTest, TestDtypesAndDevices);
TYPED_TEST(CropLayerTest, TestSetupShapeAll) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
// Crop all dimensions
layer_param.mutable_crop_param()->set_axis(0);
CropLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
for (int i = 0; i < this->blob_top_->num_axes(); ++i) {
EXPECT_EQ(this->blob_bottom_1_->shape(i), this->blob_top_->shape(i));
}
}
TYPED_TEST(CropLayerTest, TestSetupShapeDefault) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
// Crop last two dimensions, axis is 2 by default
CropLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
for (int i = 0; i < this->blob_top_->num_axes(); ++i) {
if (i < 2) {
EXPECT_EQ(this->blob_bottom_0_->shape(i), this->blob_top_->shape(i));
} else {
EXPECT_EQ(this->blob_bottom_1_->shape(i), this->blob_top_->shape(i));
}
}
}
TYPED_TEST(CropLayerTest, TestSetupShapeNegativeIndexing) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
// Crop last dimension by negative indexing
layer_param.mutable_crop_param()->set_axis(-1);
CropLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
for (int i = 0; i < this->blob_top_->num_axes(); ++i) {
if (i < 3) {
EXPECT_EQ(this->blob_bottom_0_->shape(i), this->blob_top_->shape(i));
} else {
EXPECT_EQ(this->blob_bottom_1_->shape(i), this->blob_top_->shape(i));
}
}
}
TYPED_TEST(CropLayerTest, TestCropAll) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
layer_param.mutable_crop_param()->set_axis(0);
CropLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
for (int n = 0; n < this->blob_bottom_0_->num(); ++n) {
for (int c = 0; c < this->blob_bottom_0_->channels(); ++c) {
for (int h = 0; h < this->blob_bottom_0_->height(); ++h) {
for (int w = 0; w < this->blob_bottom_0_->width(); ++w) {
if ( n < this->blob_top_->shape(0) &&
c < this->blob_top_->shape(1) &&
h < this->blob_top_->shape(2) &&
w < this->blob_top_->shape(3) ) {
EXPECT_EQ(this->blob_top_->data_at(n, c, h, w),
this->blob_bottom_0_->data_at(n, c, h, w));
}
}
}
}
}
}
TYPED_TEST(CropLayerTest, TestCropAllOffset) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
layer_param.mutable_crop_param()->set_axis(0);
layer_param.mutable_crop_param()->add_offset(0);
layer_param.mutable_crop_param()->add_offset(1);
layer_param.mutable_crop_param()->add_offset(1);
layer_param.mutable_crop_param()->add_offset(2);
CropLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
for (int n = 0; n < this->blob_bottom_0_->num(); ++n) {
for (int c = 0; c < this->blob_bottom_0_->channels(); ++c) {
for (int h = 0; h < this->blob_bottom_0_->height(); ++h) {
for (int w = 0; w < this->blob_bottom_0_->width(); ++w) {
if ( n < this->blob_top_->shape(0) &&
c < this->blob_top_->shape(1) &&
h < this->blob_top_->shape(2) &&
w < this->blob_top_->shape(3) ) {
EXPECT_EQ(this->blob_top_->data_at(n, c, h, w),
this->blob_bottom_0_->data_at(n, c+1, h+1, w+2));
}
}
}
}
}
}
TYPED_TEST(CropLayerTest, TestCropHW) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
layer_param.mutable_crop_param()->set_axis(2);
layer_param.mutable_crop_param()->add_offset(1);
layer_param.mutable_crop_param()->add_offset(2);
CropLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
for (int n = 0; n < this->blob_bottom_0_->num(); ++n) {
for (int c = 0; c < this->blob_bottom_0_->channels(); ++c) {
for (int h = 0; h < this->blob_bottom_0_->height(); ++h) {
for (int w = 0; w < this->blob_bottom_0_->width(); ++w) {
if (n < this->blob_top_->shape(0) &&
c < this->blob_top_->shape(1) &&
h < this->blob_top_->shape(2) &&
w < this->blob_top_->shape(3)) {
EXPECT_EQ(this->blob_top_->data_at(n, c, h, w),
this->blob_bottom_0_->data_at(n, c, h+1, w+2));
}
}
}
}
}
}
TYPED_TEST(CropLayerTest, TestCrop5D) {
typedef typename TypeParam::Dtype Dtype;
// Add dimension to each bottom for >4D check
vector<int> bottom_0_shape = this->blob_bottom_0_->shape();
vector<int> bottom_1_shape = this->blob_bottom_1_->shape();
bottom_0_shape.push_back(2);
bottom_1_shape.push_back(1);
this->blob_bottom_0_->Reshape(bottom_0_shape);
this->blob_bottom_1_->Reshape(bottom_1_shape);
FillerParameter filler_param;
GaussianFiller<Dtype> filler(filler_param);
filler.Fill(this->blob_bottom_0_);
filler.Fill(this->blob_bottom_1_);
// Make layer
LayerParameter layer_param;
layer_param.mutable_crop_param()->set_axis(2);
layer_param.mutable_crop_param()->add_offset(1);
layer_param.mutable_crop_param()->add_offset(2);
layer_param.mutable_crop_param()->add_offset(0);
CropLayer<Dtype> layer(layer_param);
layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
vector<int> bottom_idx = vector<int>(5, 0);
vector<int> top_idx = vector<int>(5, 0);
for (int n = 0; n < this->blob_bottom_0_->shape(0); ++n) {
for (int c = 0; c < this->blob_bottom_0_->shape(1); ++c) {
for (int z = 0; z < this->blob_bottom_0_->shape(2); ++z) {
for (int h = 0; h < this->blob_bottom_0_->shape(3); ++h) {
for (int w = 0; w < this->blob_bottom_0_->shape(4); ++w) {
if (n < this->blob_top_->shape(0) &&
c < this->blob_top_->shape(1) &&
z < this->blob_top_->shape(2) &&
h < this->blob_top_->shape(3) &&
w < this->blob_top_->shape(4)) {
bottom_idx[0] = top_idx[0] = n;
bottom_idx[1] = top_idx[1] = c;
bottom_idx[2] = z;
bottom_idx[3] = h;
bottom_idx[4] = top_idx[4] = w;
top_idx[2] = z+1;
top_idx[3] = h+2;
EXPECT_EQ(this->blob_top_->data_at(bottom_idx),
this->blob_bottom_0_->data_at(top_idx));
}
}
}
}
}
}
}
TYPED_TEST(CropLayerTest, TestCropAllGradient) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
layer_param.mutable_crop_param()->set_axis(0);
CropLayer<Dtype> layer(layer_param);
GradientChecker<Dtype> checker(1e-2, 1e-3);
checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_,
this->blob_top_vec_);
}
TYPED_TEST(CropLayerTest, TestCropHWGradient) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
layer_param.mutable_crop_param()->set_axis(2);
layer_param.mutable_crop_param()->add_offset(1);
layer_param.mutable_crop_param()->add_offset(2);
CropLayer<Dtype> layer(layer_param);
GradientChecker<Dtype> checker(1e-2, 1e-3);
checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_,
this->blob_top_vec_);
}
TYPED_TEST(CropLayerTest, TestCrop5DGradient) {
typedef typename TypeParam::Dtype Dtype;
LayerParameter layer_param;
layer_param.mutable_crop_param()->set_axis(2);
layer_param.mutable_crop_param()->add_offset(1);
layer_param.mutable_crop_param()->add_offset(2);
layer_param.mutable_crop_param()->add_offset(0);
CropLayer<Dtype> layer(layer_param);
// Add dimension to each bottom for >4D check
vector<int> bottom_0_shape = this->blob_bottom_0_->shape();
vector<int> bottom_1_shape = this->blob_bottom_1_->shape();
bottom_0_shape.push_back(2);
bottom_1_shape.push_back(1);
this->blob_bottom_0_->Reshape(bottom_0_shape);
this->blob_bottom_1_->Reshape(bottom_1_shape);
GradientChecker<Dtype> checker(1e-2, 1e-3);
checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_,
this->blob_top_vec_);
}
} // namespace caffe