From dfec9471ea3153cb63c88d0a8d6e326ce6989e34 Mon Sep 17 00:00:00 2001 From: Ross Girshick Date: Tue, 4 Feb 2014 11:00:55 -0800 Subject: [PATCH] cleanup matlab demo --- matlab/caffe/matcaffe_demo.m | 20 ++++++++++------ matlab/caffe/matcaffe_demo_weights.m | 35 ---------------------------- 2 files changed, 13 insertions(+), 42 deletions(-) delete mode 100644 matlab/caffe/matcaffe_demo_weights.m diff --git a/matlab/caffe/matcaffe_demo.m b/matlab/caffe/matcaffe_demo.m index 8b13e07a..ff27f970 100644 --- a/matlab/caffe/matcaffe_demo.m +++ b/matlab/caffe/matcaffe_demo.m @@ -1,4 +1,4 @@ -function scores = matcaffe_demo(im, use_gpu) +function [scores, layers] = matcaffe_demo(im, use_gpu) % scores = matcaffe_demo(im, use_gpu) % % Demo of the matlab wrapper using the ILSVRC network. @@ -11,7 +11,7 @@ function scores = matcaffe_demo(im, use_gpu) % scores 1000-dimensional ILSVRC score vector % % You may need to do the following before you start matlab: -% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64 +% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % @@ -20,12 +20,16 @@ function scores = matcaffe_demo(im, use_gpu) % scores = matcaffe_demo(im, 1); % [score, class] = max(scores); -model_def_file = '../../examples/imagenet/imagenet_deploy.prototxt'; -% NOTE: you'll have to get the pre-trained ILSVRC network -model_file = '../../examples/imagenet/caffe_reference_imagenet_model'; - % init caffe network (spews logging info) -caffe('init', model_def_file, model_file); +if caffe('is_initialized') == 0 + model_def_file = '../../examples/imagenet/imagenet_deploy.prototxt'; + model_file = '../../examples/imagenet/caffe_reference_imagenet_model'; + if exist(model_file, 'file') == 0 + % NOTE: you'll have to get the pre-trained ILSVRC network + error('You need a network model file'); + end + caffe('init', model_def_file, model_file); +end % set to use GPU or CPU if exist('use_gpu', 'var') && use_gpu @@ -51,6 +55,8 @@ toc; scores = reshape(scores{1}, [1000 10]); scores = mean(scores, 2); +% you can also get network weights by calling +layers = caffe('get_weights'); % ------------------------------------------------------------------------ function images = prepare_image(im) diff --git a/matlab/caffe/matcaffe_demo_weights.m b/matlab/caffe/matcaffe_demo_weights.m deleted file mode 100644 index aae15593..00000000 --- a/matlab/caffe/matcaffe_demo_weights.m +++ /dev/null @@ -1,35 +0,0 @@ -function layers = matcaffe_demo_weights(use_gpu) -% layers = matcaffe_demo_weights(use_gpu) -% -% Demo of how to extract network parameters ("weights") using the matlab -% wrapper. -% -% input -% use_gpu 1 to use the GPU, 0 to use the CPU -% -% output -% layers struct array of layers and their weights -% -% You may need to do the following before you start matlab: -% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64 -% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 -% Or the equivalent based on where things are installed on your system - -% init caffe network (spews logging info) -if caffe('is_initialized') == 0 - model_def_file = '../../examples/imagenet_deploy.prototxt'; - model_file = '../../examples/alexnet_train_iter_470000'; - caffe('init', model_def_file, model_file); -end - -% set to use GPU or CPU -if exist('use_gpu', 'var') && use_gpu - caffe('set_mode_gpu'); -else - caffe('set_mode_cpu'); -end - -% put into test mode -caffe('set_phase_test'); - -layers = caffe('get_weights');