зеркало из https://github.com/microsoft/caffe.git
105 строки
3.1 KiB
C++
105 строки
3.1 KiB
C++
// Copyright 2014 BVLC and contributors.
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <fcntl.h>
|
|
#include <google/protobuf/text_format.h>
|
|
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "caffe/blob.hpp"
|
|
#include "caffe/common.hpp"
|
|
#include "caffe/net.hpp"
|
|
#include "caffe/filler.hpp"
|
|
#include "caffe/proto/caffe.pb.h"
|
|
#include "caffe/util/benchmark.hpp"
|
|
#include "caffe/util/io.hpp"
|
|
#include "caffe/solver.hpp"
|
|
|
|
using namespace caffe; // NOLINT(build/namespaces)
|
|
|
|
int main(int argc, char** argv) {
|
|
int total_iter = 50;
|
|
if (argc < 2 || argc > 5) {
|
|
LOG(ERROR) << "net_speed_benchmark net_proto [iterations=50]"
|
|
" [CPU/GPU] [Device_id=0]";
|
|
return 1;
|
|
}
|
|
|
|
if (argc >=3) {
|
|
total_iter = atoi(argv[2]);
|
|
}
|
|
|
|
LOG(ERROR) << "Testing for " << total_iter << "Iterations.";
|
|
|
|
if (argc >= 4 && strcmp(argv[3], "GPU") == 0) {
|
|
LOG(ERROR) << "Using GPU";
|
|
uint device_id = 0;
|
|
if (argc >= 5 && strcmp(argv[3], "GPU") == 0) {
|
|
device_id = atoi(argv[4]);
|
|
}
|
|
LOG(ERROR) << "Using Device_id=" << device_id;
|
|
Caffe::SetDevice(device_id);
|
|
Caffe::set_mode(Caffe::GPU);
|
|
} else {
|
|
LOG(ERROR) << "Using CPU";
|
|
Caffe::set_mode(Caffe::CPU);
|
|
}
|
|
|
|
Caffe::set_phase(Caffe::TRAIN);
|
|
NetParameter net_param;
|
|
ReadProtoFromTextFile(argv[1],
|
|
&net_param);
|
|
Net<float> caffe_net(net_param);
|
|
|
|
// Run the network without training.
|
|
LOG(ERROR) << "Performing Forward";
|
|
// Note that for the speed benchmark, we will assume that the network does
|
|
// not take any input blobs.
|
|
float initial_loss;
|
|
caffe_net.Forward(vector<Blob<float>*>(), &initial_loss);
|
|
LOG(ERROR) << "Initial loss: " << initial_loss;
|
|
LOG(ERROR) << "Performing Backward";
|
|
caffe_net.Backward();
|
|
|
|
const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
|
|
vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs();
|
|
vector<vector<Blob<float>*> >& top_vecs = caffe_net.top_vecs();
|
|
LOG(ERROR) << "*** Benchmark begins ***";
|
|
Timer total_timer;
|
|
total_timer.Start();
|
|
Timer forward_timer;
|
|
forward_timer.Start();
|
|
Timer timer;
|
|
for (int i = 0; i < layers.size(); ++i) {
|
|
const string& layername = layers[i]->layer_param().name();
|
|
timer.Start();
|
|
for (int j = 0; j < total_iter; ++j) {
|
|
layers[i]->Forward(bottom_vecs[i], &top_vecs[i]);
|
|
}
|
|
LOG(ERROR) << layername << "\tforward: " << timer.MilliSeconds() <<
|
|
" milli seconds.";
|
|
}
|
|
LOG(ERROR) << "Forward pass: " << forward_timer.MilliSeconds() <<
|
|
" milli seconds.";
|
|
Timer backward_timer;
|
|
backward_timer.Start();
|
|
for (int i = layers.size() - 1; i >= 0; --i) {
|
|
const string& layername = layers[i]->layer_param().name();
|
|
timer.Start();
|
|
for (int j = 0; j < total_iter; ++j) {
|
|
layers[i]->Backward(top_vecs[i], true, &bottom_vecs[i]);
|
|
}
|
|
LOG(ERROR) << layername << "\tbackward: "
|
|
<< timer.MilliSeconds() << " milli seconds.";
|
|
}
|
|
LOG(ERROR) << "Backward pass: " << backward_timer.MilliSeconds() <<
|
|
" milli seconds.";
|
|
LOG(ERROR) << "Total Time: " << total_timer.MilliSeconds() <<
|
|
" milli seconds.";
|
|
LOG(ERROR) << "*** Benchmark ends ***";
|
|
return 0;
|
|
}
|