зеркало из https://github.com/microsoft/caffe.git
167 строки
5.4 KiB
C++
167 строки
5.4 KiB
C++
// Copyright 2014 BVLC and contributors.
|
|
|
|
#include <stdio.h> // for snprintf
|
|
#include <cuda_runtime.h>
|
|
#include <google/protobuf/text_format.h>
|
|
#include <leveldb/db.h>
|
|
#include <leveldb/write_batch.h>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "caffe/blob.hpp"
|
|
#include "caffe/common.hpp"
|
|
#include "caffe/net.hpp"
|
|
#include "caffe/vision_layers.hpp"
|
|
#include "caffe/proto/caffe.pb.h"
|
|
#include "caffe/util/io.hpp"
|
|
|
|
using namespace caffe; // NOLINT(build/namespaces)
|
|
|
|
template<typename Dtype>
|
|
int feature_extraction_pipeline(int argc, char** argv);
|
|
|
|
int main(int argc, char** argv) {
|
|
return feature_extraction_pipeline<float>(argc, argv);
|
|
// return feature_extraction_pipeline<double>(argc, argv);
|
|
}
|
|
|
|
template<typename Dtype>
|
|
int feature_extraction_pipeline(int argc, char** argv) {
|
|
const int num_required_args = 6;
|
|
if (argc < num_required_args) {
|
|
LOG(ERROR)<<
|
|
"This program takes in a trained network and an input data layer, and then"
|
|
" extract features of the input data produced by the net.\n"
|
|
"Usage: demo_extract_features pretrained_net_param"
|
|
" feature_extraction_proto_file extract_feature_blob_name"
|
|
" save_feature_leveldb_name num_mini_batches [CPU/GPU] [DEVICE_ID=0]";
|
|
return 1;
|
|
}
|
|
int arg_pos = num_required_args;
|
|
|
|
arg_pos = num_required_args;
|
|
if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == 0) {
|
|
LOG(ERROR)<< "Using GPU";
|
|
uint device_id = 0;
|
|
if (argc > arg_pos + 1) {
|
|
device_id = atoi(argv[arg_pos + 1]);
|
|
CHECK_GE(device_id, 0);
|
|
}
|
|
LOG(ERROR) << "Using Device_id=" << device_id;
|
|
Caffe::SetDevice(device_id);
|
|
Caffe::set_mode(Caffe::GPU);
|
|
} else {
|
|
LOG(ERROR) << "Using CPU";
|
|
Caffe::set_mode(Caffe::CPU);
|
|
}
|
|
Caffe::set_phase(Caffe::TEST);
|
|
|
|
arg_pos = 0; // the name of the executable
|
|
string pretrained_binary_proto(argv[++arg_pos]);
|
|
|
|
// Expected prototxt contains at least one data layer such as
|
|
// the layer data_layer_name and one feature blob such as the
|
|
// fc7 top blob to extract features.
|
|
/*
|
|
layers {
|
|
name: "data_layer_name"
|
|
type: DATA
|
|
data_param {
|
|
source: "/path/to/your/images/to/extract/feature/images_leveldb"
|
|
mean_file: "/path/to/your/image_mean.binaryproto"
|
|
batch_size: 128
|
|
crop_size: 227
|
|
mirror: false
|
|
}
|
|
top: "data_blob_name"
|
|
top: "label_blob_name"
|
|
}
|
|
layers {
|
|
name: "drop7"
|
|
type: DROPOUT
|
|
dropout_param {
|
|
dropout_ratio: 0.5
|
|
}
|
|
bottom: "fc7"
|
|
top: "fc7"
|
|
}
|
|
*/
|
|
string feature_extraction_proto(argv[++arg_pos]);
|
|
shared_ptr<Net<Dtype> > feature_extraction_net(
|
|
new Net<Dtype>(feature_extraction_proto));
|
|
feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto);
|
|
|
|
string extract_feature_blob_name(argv[++arg_pos]);
|
|
CHECK(feature_extraction_net->has_blob(extract_feature_blob_name))
|
|
<< "Unknown feature blob name " << extract_feature_blob_name
|
|
<< " in the network " << feature_extraction_proto;
|
|
|
|
string save_feature_leveldb_name(argv[++arg_pos]);
|
|
leveldb::DB* db;
|
|
leveldb::Options options;
|
|
options.error_if_exists = true;
|
|
options.create_if_missing = true;
|
|
options.write_buffer_size = 268435456;
|
|
LOG(INFO)<< "Opening leveldb " << save_feature_leveldb_name;
|
|
leveldb::Status status = leveldb::DB::Open(options,
|
|
save_feature_leveldb_name.c_str(),
|
|
&db);
|
|
CHECK(status.ok()) << "Failed to open leveldb " << save_feature_leveldb_name;
|
|
|
|
int num_mini_batches = atoi(argv[++arg_pos]);
|
|
|
|
LOG(ERROR)<< "Extacting Features";
|
|
|
|
Datum datum;
|
|
leveldb::WriteBatch* batch = new leveldb::WriteBatch();
|
|
const int kMaxKeyStrLength = 100;
|
|
char key_str[kMaxKeyStrLength];
|
|
int num_bytes_of_binary_code = sizeof(Dtype);
|
|
vector<Blob<float>*> input_vec;
|
|
int image_index = 0;
|
|
for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) {
|
|
feature_extraction_net->Forward(input_vec);
|
|
const shared_ptr<Blob<Dtype> > feature_blob = feature_extraction_net
|
|
->blob_by_name(extract_feature_blob_name);
|
|
int num_features = feature_blob->num();
|
|
int dim_features = feature_blob->count() / num_features;
|
|
Dtype* feature_blob_data;
|
|
for (int n = 0; n < num_features; ++n) {
|
|
datum.set_height(dim_features);
|
|
datum.set_width(1);
|
|
datum.set_channels(1);
|
|
datum.clear_data();
|
|
datum.clear_float_data();
|
|
feature_blob_data = feature_blob->mutable_cpu_data() +
|
|
feature_blob->offset(n);
|
|
for (int d = 0; d < dim_features; ++d) {
|
|
datum.add_float_data(feature_blob_data[d]);
|
|
}
|
|
string value;
|
|
datum.SerializeToString(&value);
|
|
snprintf(key_str, kMaxKeyStrLength, "%d", image_index);
|
|
batch->Put(string(key_str), value);
|
|
++image_index;
|
|
if (image_index % 1000 == 0) {
|
|
db->Write(leveldb::WriteOptions(), batch);
|
|
LOG(ERROR)<< "Extracted features of " << image_index <<
|
|
" query images.";
|
|
delete batch;
|
|
batch = new leveldb::WriteBatch();
|
|
}
|
|
} // for (int n = 0; n < num_features; ++n)
|
|
} // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index)
|
|
// write the last batch
|
|
if (image_index % 1000 != 0) {
|
|
db->Write(leveldb::WriteOptions(), batch);
|
|
LOG(ERROR)<< "Extracted features of " << image_index <<
|
|
" query images.";
|
|
}
|
|
|
|
delete batch;
|
|
delete db;
|
|
LOG(ERROR)<< "Successfully extracted the features!";
|
|
return 0;
|
|
}
|
|
|