зеркало из https://github.com/microsoft/caffe.git
223 строки
3.0 KiB
Plaintext
223 строки
3.0 KiB
Plaintext
name: "CIFAR10_quick"
|
|
layer {
|
|
name: "cifar"
|
|
type: "Data"
|
|
top: "data"
|
|
top: "label"
|
|
include {
|
|
phase: TRAIN
|
|
}
|
|
transform_param {
|
|
mean_file: "examples/cifar10/mean.binaryproto"
|
|
}
|
|
data_param {
|
|
source: "examples/cifar10/cifar10_train_lmdb"
|
|
batch_size: 100
|
|
backend: LMDB
|
|
}
|
|
}
|
|
layer {
|
|
name: "cifar"
|
|
type: "Data"
|
|
top: "data"
|
|
top: "label"
|
|
include {
|
|
phase: TEST
|
|
}
|
|
transform_param {
|
|
mean_file: "examples/cifar10/mean.binaryproto"
|
|
}
|
|
data_param {
|
|
source: "examples/cifar10/cifar10_test_lmdb"
|
|
batch_size: 100
|
|
backend: LMDB
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv1"
|
|
type: "Convolution"
|
|
bottom: "data"
|
|
top: "conv1"
|
|
param {
|
|
lr_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
pad: 2
|
|
kernel_size: 5
|
|
stride: 1
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.0001
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "pool1"
|
|
type: "Pooling"
|
|
bottom: "conv1"
|
|
top: "pool1"
|
|
pooling_param {
|
|
pool: MAX
|
|
kernel_size: 3
|
|
stride: 2
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu1"
|
|
type: "ReLU"
|
|
bottom: "pool1"
|
|
top: "pool1"
|
|
}
|
|
layer {
|
|
name: "conv2"
|
|
type: "Convolution"
|
|
bottom: "pool1"
|
|
top: "conv2"
|
|
param {
|
|
lr_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
}
|
|
convolution_param {
|
|
num_output: 32
|
|
pad: 2
|
|
kernel_size: 5
|
|
stride: 1
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.01
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu2"
|
|
type: "ReLU"
|
|
bottom: "conv2"
|
|
top: "conv2"
|
|
}
|
|
layer {
|
|
name: "pool2"
|
|
type: "Pooling"
|
|
bottom: "conv2"
|
|
top: "pool2"
|
|
pooling_param {
|
|
pool: AVE
|
|
kernel_size: 3
|
|
stride: 2
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv3"
|
|
type: "Convolution"
|
|
bottom: "pool2"
|
|
top: "conv3"
|
|
param {
|
|
lr_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
pad: 2
|
|
kernel_size: 5
|
|
stride: 1
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.01
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu3"
|
|
type: "ReLU"
|
|
bottom: "conv3"
|
|
top: "conv3"
|
|
}
|
|
layer {
|
|
name: "pool3"
|
|
type: "Pooling"
|
|
bottom: "conv3"
|
|
top: "pool3"
|
|
pooling_param {
|
|
pool: AVE
|
|
kernel_size: 3
|
|
stride: 2
|
|
}
|
|
}
|
|
layer {
|
|
name: "ip1"
|
|
type: "InnerProduct"
|
|
bottom: "pool3"
|
|
top: "ip1"
|
|
param {
|
|
lr_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
}
|
|
inner_product_param {
|
|
num_output: 64
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.1
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "ip2"
|
|
type: "InnerProduct"
|
|
bottom: "ip1"
|
|
top: "ip2"
|
|
param {
|
|
lr_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
}
|
|
inner_product_param {
|
|
num_output: 10
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.1
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "accuracy"
|
|
type: "Accuracy"
|
|
bottom: "ip2"
|
|
bottom: "label"
|
|
top: "accuracy"
|
|
include {
|
|
phase: TEST
|
|
}
|
|
}
|
|
layer {
|
|
name: "loss"
|
|
type: "SoftmaxWithLoss"
|
|
bottom: "ip2"
|
|
bottom: "label"
|
|
top: "loss"
|
|
}
|