зеркало из https://github.com/microsoft/caffe.git
157 строки
4.9 KiB
C++
157 строки
4.9 KiB
C++
// This program converts a set of images to a lmdb/leveldb by storing them
|
|
// as Datum proto buffers.
|
|
// Usage:
|
|
// convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME
|
|
//
|
|
// where ROOTFOLDER is the root folder that holds all the images, and LISTFILE
|
|
// should be a list of files as well as their labels, in the format as
|
|
// subfolder1/file1.JPEG 7
|
|
// ....
|
|
|
|
#include <algorithm>
|
|
#include <fstream> // NOLINT(readability/streams)
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "boost/scoped_ptr.hpp"
|
|
#include "gflags/gflags.h"
|
|
#include "glog/logging.h"
|
|
|
|
#include "caffe/proto/caffe.pb.h"
|
|
#include "caffe/util/db.hpp"
|
|
#include "caffe/util/format.hpp"
|
|
#include "caffe/util/io.hpp"
|
|
#include "caffe/util/rng.hpp"
|
|
|
|
using namespace caffe; // NOLINT(build/namespaces)
|
|
using std::pair;
|
|
using boost::scoped_ptr;
|
|
|
|
DEFINE_bool(gray, false,
|
|
"When this option is on, treat images as grayscale ones");
|
|
DEFINE_bool(shuffle, false,
|
|
"Randomly shuffle the order of images and their labels");
|
|
DEFINE_string(backend, "lmdb",
|
|
"The backend {lmdb, leveldb} for storing the result");
|
|
DEFINE_int32(resize_width, 0, "Width images are resized to");
|
|
DEFINE_int32(resize_height, 0, "Height images are resized to");
|
|
DEFINE_bool(check_size, false,
|
|
"When this option is on, check that all the datum have the same size");
|
|
DEFINE_bool(encoded, false,
|
|
"When this option is on, the encoded image will be save in datum");
|
|
DEFINE_string(encode_type, "",
|
|
"Optional: What type should we encode the image as ('png','jpg',...).");
|
|
|
|
int main(int argc, char** argv) {
|
|
#ifdef USE_OPENCV
|
|
::google::InitGoogleLogging(argv[0]);
|
|
// Print output to stderr (while still logging)
|
|
FLAGS_alsologtostderr = 1;
|
|
|
|
#ifndef GFLAGS_GFLAGS_H_
|
|
namespace gflags = google;
|
|
#endif
|
|
|
|
gflags::SetUsageMessage("Convert a set of images to the leveldb/lmdb\n"
|
|
"format used as input for Caffe.\n"
|
|
"Usage:\n"
|
|
" convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME\n"
|
|
"The ImageNet dataset for the training demo is at\n"
|
|
" http://www.image-net.org/download-images\n");
|
|
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
if (argc < 4) {
|
|
gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/convert_imageset");
|
|
return 1;
|
|
}
|
|
|
|
const bool is_color = !FLAGS_gray;
|
|
const bool check_size = FLAGS_check_size;
|
|
const bool encoded = FLAGS_encoded;
|
|
const string encode_type = FLAGS_encode_type;
|
|
|
|
std::ifstream infile(argv[2]);
|
|
std::vector<std::pair<std::string, int> > lines;
|
|
std::string filename;
|
|
int label;
|
|
while (infile >> filename >> label) {
|
|
lines.push_back(std::make_pair(filename, label));
|
|
}
|
|
if (FLAGS_shuffle) {
|
|
// randomly shuffle data
|
|
LOG(INFO) << "Shuffling data";
|
|
shuffle(lines.begin(), lines.end());
|
|
}
|
|
LOG(INFO) << "A total of " << lines.size() << " images.";
|
|
|
|
if (encode_type.size() && !encoded)
|
|
LOG(INFO) << "encode_type specified, assuming encoded=true.";
|
|
|
|
int resize_height = std::max<int>(0, FLAGS_resize_height);
|
|
int resize_width = std::max<int>(0, FLAGS_resize_width);
|
|
|
|
// Create new DB
|
|
scoped_ptr<db::DB> db(db::GetDB(FLAGS_backend));
|
|
db->Open(argv[3], db::NEW);
|
|
scoped_ptr<db::Transaction> txn(db->NewTransaction());
|
|
|
|
// Storing to db
|
|
std::string root_folder(argv[1]);
|
|
Datum datum;
|
|
int count = 0;
|
|
int data_size = 0;
|
|
bool data_size_initialized = false;
|
|
|
|
for (int line_id = 0; line_id < lines.size(); ++line_id) {
|
|
bool status;
|
|
std::string enc = encode_type;
|
|
if (encoded && !enc.size()) {
|
|
// Guess the encoding type from the file name
|
|
string fn = lines[line_id].first;
|
|
size_t p = fn.rfind('.');
|
|
if ( p == fn.npos )
|
|
LOG(WARNING) << "Failed to guess the encoding of '" << fn << "'";
|
|
enc = fn.substr(p);
|
|
std::transform(enc.begin(), enc.end(), enc.begin(), ::tolower);
|
|
}
|
|
status = ReadImageToDatum(root_folder + lines[line_id].first,
|
|
lines[line_id].second, resize_height, resize_width, is_color,
|
|
enc, &datum);
|
|
if (status == false) continue;
|
|
if (check_size) {
|
|
if (!data_size_initialized) {
|
|
data_size = datum.channels() * datum.height() * datum.width();
|
|
data_size_initialized = true;
|
|
} else {
|
|
const std::string& data = datum.data();
|
|
CHECK_EQ(data.size(), data_size) << "Incorrect data field size "
|
|
<< data.size();
|
|
}
|
|
}
|
|
// sequential
|
|
string key_str = caffe::format_int(line_id, 8) + "_" + lines[line_id].first;
|
|
|
|
// Put in db
|
|
string out;
|
|
CHECK(datum.SerializeToString(&out));
|
|
txn->Put(key_str, out);
|
|
|
|
if (++count % 1000 == 0) {
|
|
// Commit db
|
|
txn->Commit();
|
|
txn.reset(db->NewTransaction());
|
|
LOG(INFO) << "Processed " << count << " files.";
|
|
}
|
|
}
|
|
// write the last batch
|
|
if (count % 1000 != 0) {
|
|
txn->Commit();
|
|
LOG(INFO) << "Processed " << count << " files.";
|
|
}
|
|
#else
|
|
LOG(FATAL) << "This tool requires OpenCV; compile with USE_OPENCV.";
|
|
#endif // USE_OPENCV
|
|
return 0;
|
|
}
|