зеркало из https://github.com/microsoft/caffe.git
377 строки
5.2 KiB
Plaintext
377 строки
5.2 KiB
Plaintext
name: "CaffeNet"
|
|
layers {
|
|
layer {
|
|
name: "data"
|
|
type: "window_data"
|
|
source: "/work5/rbg/convnet-selective-search/selective-search-data/window_file_2007_val.txt"
|
|
meanfile: "/home/rbg/working/caffe-rbg/data/ilsvrc2012_mean.binaryproto"
|
|
batchsize: 128
|
|
cropsize: 227
|
|
mirror: true
|
|
det_fg_threshold: 0.6
|
|
det_bg_threshold: 0.3
|
|
det_fg_fraction: 0.5
|
|
}
|
|
top: "data"
|
|
top: "label"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "conv1"
|
|
type: "conv"
|
|
num_output: 96
|
|
kernelsize: 11
|
|
stride: 4
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.01
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0.
|
|
}
|
|
blobs_lr: 1.
|
|
blobs_lr: 2.
|
|
weight_decay: 1.
|
|
weight_decay: 0.
|
|
}
|
|
bottom: "data"
|
|
top: "conv1"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "relu1"
|
|
type: "relu"
|
|
}
|
|
bottom: "conv1"
|
|
top: "conv1"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "pool1"
|
|
type: "pool"
|
|
pool: MAX
|
|
kernelsize: 3
|
|
stride: 2
|
|
}
|
|
bottom: "conv1"
|
|
top: "pool1"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "norm1"
|
|
type: "lrn"
|
|
local_size: 5
|
|
alpha: 0.0001
|
|
beta: 0.75
|
|
}
|
|
bottom: "pool1"
|
|
top: "norm1"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "pad2"
|
|
type: "padding"
|
|
pad: 2
|
|
}
|
|
bottom: "norm1"
|
|
top: "pad2"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "conv2"
|
|
type: "conv"
|
|
num_output: 256
|
|
group: 2
|
|
kernelsize: 5
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.01
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 1.
|
|
}
|
|
blobs_lr: 1.
|
|
blobs_lr: 2.
|
|
weight_decay: 1.
|
|
weight_decay: 0.
|
|
}
|
|
bottom: "pad2"
|
|
top: "conv2"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "relu2"
|
|
type: "relu"
|
|
}
|
|
bottom: "conv2"
|
|
top: "conv2"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "pool2"
|
|
type: "pool"
|
|
pool: MAX
|
|
kernelsize: 3
|
|
stride: 2
|
|
}
|
|
bottom: "conv2"
|
|
top: "pool2"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "norm2"
|
|
type: "lrn"
|
|
local_size: 5
|
|
alpha: 0.0001
|
|
beta: 0.75
|
|
}
|
|
bottom: "pool2"
|
|
top: "norm2"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "pad3"
|
|
type: "padding"
|
|
pad: 1
|
|
}
|
|
bottom: "norm2"
|
|
top: "pad3"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "conv3"
|
|
type: "conv"
|
|
num_output: 384
|
|
kernelsize: 3
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.01
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0.
|
|
}
|
|
blobs_lr: 1.
|
|
blobs_lr: 2.
|
|
weight_decay: 1.
|
|
weight_decay: 0.
|
|
}
|
|
bottom: "pad3"
|
|
top: "conv3"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "relu3"
|
|
type: "relu"
|
|
}
|
|
bottom: "conv3"
|
|
top: "conv3"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "pad4"
|
|
type: "padding"
|
|
pad: 1
|
|
}
|
|
bottom: "conv3"
|
|
top: "pad4"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "conv4"
|
|
type: "conv"
|
|
num_output: 384
|
|
group: 2
|
|
kernelsize: 3
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.01
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 1.
|
|
}
|
|
blobs_lr: 1.
|
|
blobs_lr: 2.
|
|
weight_decay: 1.
|
|
weight_decay: 0.
|
|
}
|
|
bottom: "pad4"
|
|
top: "conv4"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "relu4"
|
|
type: "relu"
|
|
}
|
|
bottom: "conv4"
|
|
top: "conv4"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "pad5"
|
|
type: "padding"
|
|
pad: 1
|
|
}
|
|
bottom: "conv4"
|
|
top: "pad5"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "conv5"
|
|
type: "conv"
|
|
num_output: 256
|
|
group: 2
|
|
kernelsize: 3
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.01
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 1.
|
|
}
|
|
blobs_lr: 1.
|
|
blobs_lr: 2.
|
|
weight_decay: 1.
|
|
weight_decay: 0.
|
|
}
|
|
bottom: "pad5"
|
|
top: "conv5"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "relu5"
|
|
type: "relu"
|
|
}
|
|
bottom: "conv5"
|
|
top: "conv5"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "pool5"
|
|
type: "pool"
|
|
kernelsize: 3
|
|
pool: MAX
|
|
stride: 2
|
|
}
|
|
bottom: "conv5"
|
|
top: "pool5"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "fc6"
|
|
type: "innerproduct"
|
|
num_output: 4096
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.005
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 1.
|
|
}
|
|
blobs_lr: 1.
|
|
blobs_lr: 2.
|
|
weight_decay: 1.
|
|
weight_decay: 0.
|
|
}
|
|
bottom: "pool5"
|
|
top: "fc6"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "relu6"
|
|
type: "relu"
|
|
}
|
|
bottom: "fc6"
|
|
top: "fc6"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "drop6"
|
|
type: "dropout"
|
|
dropout_ratio: 0.5
|
|
}
|
|
bottom: "fc6"
|
|
top: "fc6"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "fc7"
|
|
type: "innerproduct"
|
|
num_output: 4096
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.005
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 1.
|
|
}
|
|
blobs_lr: 1.
|
|
blobs_lr: 2.
|
|
weight_decay: 1.
|
|
weight_decay: 0.
|
|
}
|
|
bottom: "fc6"
|
|
top: "fc7"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "relu7"
|
|
type: "relu"
|
|
}
|
|
bottom: "fc7"
|
|
top: "fc7"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "drop7"
|
|
type: "dropout"
|
|
dropout_ratio: 0.5
|
|
}
|
|
bottom: "fc7"
|
|
top: "fc7"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "fc8"
|
|
type: "innerproduct"
|
|
num_output: 21
|
|
weight_filler {
|
|
type: "gaussian"
|
|
std: 0.01
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0
|
|
}
|
|
blobs_lr: 1.
|
|
blobs_lr: 2.
|
|
weight_decay: 1.
|
|
weight_decay: 0.
|
|
}
|
|
bottom: "fc7"
|
|
top: "fc8"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "prob"
|
|
type: "softmax"
|
|
}
|
|
bottom: "fc8"
|
|
top: "prob"
|
|
}
|
|
layers {
|
|
layer {
|
|
name: "accuracy"
|
|
type: "accuracy"
|
|
}
|
|
bottom: "prob"
|
|
bottom: "label"
|
|
top: "accuracy"
|
|
}
|