clang-1/lib/CodeGen/CGObjC.cpp

815 строки
34 KiB
C++
Исходник Обычный вид История

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Objective-C code as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGObjCRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;
/// Emits an instance of NSConstantString representing the object.
llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
{
llvm::Constant *C =
CGM.getObjCRuntime().GenerateConstantString(E->getString());
// FIXME: This bitcast should just be made an invariant on the Runtime.
return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
}
/// Emit a selector.
llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
// Untyped selector.
// Note that this implementation allows for non-constant strings to be passed
// as arguments to @selector(). Currently, the only thing preventing this
// behaviour is the type checking in the front end.
return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
}
llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
// FIXME: This should pass the Decl not the name.
return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
}
RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E) {
// Only the lookup mechanism and first two arguments of the method
// implementation vary between runtimes. We can get the receiver and
// arguments in generic code.
CGObjCRuntime &Runtime = CGM.getObjCRuntime();
bool isSuperMessage = false;
bool isClassMessage = false;
ObjCInterfaceDecl *OID = 0;
// Find the receiver
llvm::Value *Receiver = 0;
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@101972 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-21 04:45:42 +04:00
switch (E->getReceiverKind()) {
case ObjCMessageExpr::Instance:
Receiver = EmitScalarExpr(E->getInstanceReceiver());
break;
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@101972 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-21 04:45:42 +04:00
case ObjCMessageExpr::Class: {
const ObjCInterfaceType *IFace
= E->getClassReceiver()->getAs<ObjCInterfaceType>();
OID = IFace->getDecl();
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@101972 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-21 04:45:42 +04:00
assert(IFace && "Invalid Objective-C class message send");
Receiver = Runtime.GetClass(Builder, OID);
isClassMessage = true;
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@101972 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-21 04:45:42 +04:00
break;
}
case ObjCMessageExpr::SuperInstance:
Receiver = LoadObjCSelf();
isSuperMessage = true;
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@101972 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-21 04:45:42 +04:00
break;
case ObjCMessageExpr::SuperClass:
Receiver = LoadObjCSelf();
Overhaul the AST representation of Objective-C message send expressions, to improve source-location information, clarify the actual receiver of the message, and pave the way for proper C++ support. The ObjCMessageExpr node represents four different kinds of message sends in a single AST node: 1) Send to a object instance described by an expression (e.g., [x method:5]) 2) Send to a class described by the class name (e.g., [NSString method:5]) 3) Send to a superclass class (e.g, [super method:5] in class method) 4) Send to a superclass instance (e.g., [super method:5] in instance method) Previously these four cases where tangled together. Now, they have more distinct representations. Specific changes: 1) Unchanged; the object instance is represented by an Expr*. 2) Previously stored the ObjCInterfaceDecl* referring to the class receiving the message. Now stores a TypeSourceInfo* so that we know how the class was spelled. This both maintains typedef information and opens the door for more complicated C++ types (e.g., dependent types). There was an alternative, unused representation of these sends by naming the class via an IdentifierInfo *. In practice, we either had an ObjCInterfaceDecl *, from which we would get the IdentifierInfo *, or we fell into the case below... 3) Previously represented by a class message whose IdentifierInfo * referred to "super". Sema and CodeGen would use isStr("super") to determine if they had a send to super. Now represented as a "class super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). 4) Previously represented by an instance message whose receiver is a an ObjCSuperExpr, which Sema and CodeGen would check for via isa<ObjCSuperExpr>(). Now represented as an "instance super" send, where we have both the location of the "super" keyword and the ObjCInterfaceDecl* of the superclass we're targetting (statically). Note that ObjCSuperExpr only has one remaining use in the AST, which is for "super.prop" references. The new representation of ObjCMessageExpr is 2 pointers smaller than the old one, since it combines more storage. It also eliminates a leak when we loaded message-send expressions from a precompiled header. The representation also feels much cleaner to me; comments welcome! This patch attempts to maintain the same semantics we previously had with Objective-C message sends. In several places, there are massive changes that boil down to simply replacing a nested-if structure such as: if (message has a receiver expression) { // instance message if (isa<ObjCSuperExpr>(...)) { // send to super } else { // send to an object } } else { // class message if (name->isStr("super")) { // class send to super } else { // send to class } } with a switch switch (E->getReceiverKind()) { case ObjCMessageExpr::SuperInstance: ... case ObjCMessageExpr::Instance: ... case ObjCMessageExpr::SuperClass: ... case ObjCMessageExpr::Class:... } There are quite a few places (particularly in the checkers) where send-to-super is effectively ignored. I've placed FIXMEs in most of them, and attempted to address send-to-super in a reasonable way. This could use some review. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@101972 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-21 04:45:42 +04:00
isSuperMessage = true;
isClassMessage = true;
break;
}
CallArgList Args;
EmitCallArgs(Args, E->getMethodDecl(), E->arg_begin(), E->arg_end());
if (isSuperMessage) {
// super is only valid in an Objective-C method
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
return Runtime.GenerateMessageSendSuper(*this, E->getType(),
E->getSelector(),
OMD->getClassInterface(),
isCategoryImpl,
Receiver,
isClassMessage,
Args,
E->getMethodDecl());
}
return Runtime.GenerateMessageSend(*this, E->getType(), E->getSelector(),
Receiver, Args, OID,
E->getMethodDecl());
}
/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
/// the LLVM function and sets the other context used by
/// CodeGenFunction.
void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
const ObjCContainerDecl *CD) {
FunctionArgList Args;
// Check if we should generate debug info for this method.
if (CGM.getDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
DebugInfo = CGM.getDebugInfo();
llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD);
CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
Args.push_back(std::make_pair(OMD->getSelfDecl(),
OMD->getSelfDecl()->getType()));
Args.push_back(std::make_pair(OMD->getCmdDecl(),
OMD->getCmdDecl()->getType()));
for (ObjCMethodDecl::param_iterator PI = OMD->param_begin(),
E = OMD->param_end(); PI != E; ++PI)
Args.push_back(std::make_pair(*PI, (*PI)->getType()));
StartFunction(OMD, OMD->getResultType(), Fn, Args, OMD->getLocStart());
}
/// Generate an Objective-C method. An Objective-C method is a C function with
/// its pointer, name, and types registered in the class struture.
void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
StartObjCMethod(OMD, OMD->getClassInterface());
EmitStmt(OMD->getBody());
FinishFunction(OMD->getBodyRBrace());
}
// FIXME: I wasn't sure about the synthesis approach. If we end up generating an
// AST for the whole body we can just fall back to having a GenerateFunction
// which takes the body Stmt.
/// GenerateObjCGetter - Generate an Objective-C property getter
/// function. The given Decl must be an ObjCImplementationDecl. @synthesize
/// is illegal within a category.
void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID) {
ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl();
const ObjCPropertyDecl *PD = PID->getPropertyDecl();
bool IsAtomic =
!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic);
ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
assert(OMD && "Invalid call to generate getter (empty method)");
StartObjCMethod(OMD, IMP->getClassInterface());
// Determine if we should use an objc_getProperty call for
// this. Non-atomic properties are directly evaluated.
// atomic 'copy' and 'retain' properties are also directly
// evaluated in gc-only mode.
if (CGM.getLangOptions().getGCMode() != LangOptions::GCOnly &&
IsAtomic &&
(PD->getSetterKind() == ObjCPropertyDecl::Copy ||
PD->getSetterKind() == ObjCPropertyDecl::Retain)) {
llvm::Value *GetPropertyFn =
CGM.getObjCRuntime().GetPropertyGetFunction();
if (!GetPropertyFn) {
CGM.ErrorUnsupported(PID, "Obj-C getter requiring atomic copy");
FinishFunction();
return;
}
// Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
// FIXME: Can't this be simpler? This might even be worse than the
// corresponding gcc code.
CodeGenTypes &Types = CGM.getTypes();
ValueDecl *Cmd = OMD->getCmdDecl();
llvm::Value *CmdVal = Builder.CreateLoad(LocalDeclMap[Cmd], "cmd");
QualType IdTy = getContext().getObjCIdType();
llvm::Value *SelfAsId =
Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
llvm::Value *Offset = EmitIvarOffset(IMP->getClassInterface(), Ivar);
llvm::Value *True =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1);
CallArgList Args;
Args.push_back(std::make_pair(RValue::get(SelfAsId), IdTy));
Args.push_back(std::make_pair(RValue::get(CmdVal), Cmd->getType()));
Args.push_back(std::make_pair(RValue::get(Offset), getContext().LongTy));
Args.push_back(std::make_pair(RValue::get(True), getContext().BoolTy));
// FIXME: We shouldn't need to get the function info here, the
// runtime already should have computed it to build the function.
RValue RV = EmitCall(Types.getFunctionInfo(PD->getType(), Args,
FunctionType::ExtInfo()),
GetPropertyFn, ReturnValueSlot(), Args);
// We need to fix the type here. Ivars with copy & retain are
// always objects so we don't need to worry about complex or
// aggregates.
RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
Types.ConvertType(PD->getType())));
EmitReturnOfRValue(RV, PD->getType());
} else {
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0);
if (Ivar->getType()->isAnyComplexType()) {
ComplexPairTy Pair = LoadComplexFromAddr(LV.getAddress(),
LV.isVolatileQualified());
StoreComplexToAddr(Pair, ReturnValue, LV.isVolatileQualified());
}
else if (hasAggregateLLVMType(Ivar->getType())) {
bool IsStrong = false;
if ((IsAtomic || (IsStrong = IvarTypeWithAggrGCObjects(Ivar->getType())))
&& CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect
&& CGM.getObjCRuntime().GetCopyStructFunction()) {
llvm::Value *GetCopyStructFn =
CGM.getObjCRuntime().GetCopyStructFunction();
CodeGenTypes &Types = CGM.getTypes();
// objc_copyStruct (ReturnValue, &structIvar,
// sizeof (Type of Ivar), isAtomic, false);
CallArgList Args;
RValue RV = RValue::get(Builder.CreateBitCast(ReturnValue,
Types.ConvertType(getContext().VoidPtrTy)));
Args.push_back(std::make_pair(RV, getContext().VoidPtrTy));
RV = RValue::get(Builder.CreateBitCast(LV.getAddress(),
Types.ConvertType(getContext().VoidPtrTy)));
Args.push_back(std::make_pair(RV, getContext().VoidPtrTy));
// sizeof (Type of Ivar)
uint64_t Size = getContext().getTypeSize(Ivar->getType()) / 8;
llvm::Value *SizeVal =
llvm::ConstantInt::get(Types.ConvertType(getContext().LongTy), Size);
Args.push_back(std::make_pair(RValue::get(SizeVal),
getContext().LongTy));
llvm::Value *isAtomic =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy),
IsAtomic ? 1 : 0);
Args.push_back(std::make_pair(RValue::get(isAtomic),
getContext().BoolTy));
llvm::Value *hasStrong =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy),
IsStrong ? 1 : 0);
Args.push_back(std::make_pair(RValue::get(hasStrong),
getContext().BoolTy));
EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args,
FunctionType::ExtInfo()),
GetCopyStructFn, ReturnValueSlot(), Args);
}
else
EmitAggregateCopy(ReturnValue, LV.getAddress(), Ivar->getType());
} else {
CodeGenTypes &Types = CGM.getTypes();
RValue RV = EmitLoadOfLValue(LV, Ivar->getType());
RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
Types.ConvertType(PD->getType())));
EmitReturnOfRValue(RV, PD->getType());
}
}
FinishFunction();
}
/// GenerateObjCSetter - Generate an Objective-C property setter
/// function. The given Decl must be an ObjCImplementationDecl. @synthesize
/// is illegal within a category.
void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID) {
ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl();
const ObjCPropertyDecl *PD = PID->getPropertyDecl();
ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
assert(OMD && "Invalid call to generate setter (empty method)");
StartObjCMethod(OMD, IMP->getClassInterface());
bool IsCopy = PD->getSetterKind() == ObjCPropertyDecl::Copy;
bool IsAtomic =
!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic);
// Determine if we should use an objc_setProperty call for
// this. Properties with 'copy' semantics always use it, as do
// non-atomic properties with 'release' semantics as long as we are
// not in gc-only mode.
if (IsCopy ||
(CGM.getLangOptions().getGCMode() != LangOptions::GCOnly &&
PD->getSetterKind() == ObjCPropertyDecl::Retain)) {
llvm::Value *SetPropertyFn =
CGM.getObjCRuntime().GetPropertySetFunction();
if (!SetPropertyFn) {
CGM.ErrorUnsupported(PID, "Obj-C getter requiring atomic copy");
FinishFunction();
return;
}
// Emit objc_setProperty((id) self, _cmd, offset, arg,
// <is-atomic>, <is-copy>).
// FIXME: Can't this be simpler? This might even be worse than the
// corresponding gcc code.
CodeGenTypes &Types = CGM.getTypes();
ValueDecl *Cmd = OMD->getCmdDecl();
llvm::Value *CmdVal = Builder.CreateLoad(LocalDeclMap[Cmd], "cmd");
QualType IdTy = getContext().getObjCIdType();
llvm::Value *SelfAsId =
Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
llvm::Value *Offset = EmitIvarOffset(IMP->getClassInterface(), Ivar);
llvm::Value *Arg = LocalDeclMap[*OMD->param_begin()];
llvm::Value *ArgAsId =
Builder.CreateBitCast(Builder.CreateLoad(Arg, "arg"),
Types.ConvertType(IdTy));
llvm::Value *True =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1);
llvm::Value *False =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 0);
CallArgList Args;
Args.push_back(std::make_pair(RValue::get(SelfAsId), IdTy));
Args.push_back(std::make_pair(RValue::get(CmdVal), Cmd->getType()));
Args.push_back(std::make_pair(RValue::get(Offset), getContext().LongTy));
Args.push_back(std::make_pair(RValue::get(ArgAsId), IdTy));
Args.push_back(std::make_pair(RValue::get(IsAtomic ? True : False),
getContext().BoolTy));
Args.push_back(std::make_pair(RValue::get(IsCopy ? True : False),
getContext().BoolTy));
// FIXME: We shouldn't need to get the function info here, the runtime
// already should have computed it to build the function.
EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args,
FunctionType::ExtInfo()),
SetPropertyFn,
ReturnValueSlot(), Args);
} else if (IsAtomic && hasAggregateLLVMType(Ivar->getType()) &&
!Ivar->getType()->isAnyComplexType() &&
IndirectObjCSetterArg(*CurFnInfo)
&& CGM.getObjCRuntime().GetCopyStructFunction()) {
// objc_copyStruct (&structIvar, &Arg,
// sizeof (struct something), true, false);
llvm::Value *GetCopyStructFn =
CGM.getObjCRuntime().GetCopyStructFunction();
CodeGenTypes &Types = CGM.getTypes();
CallArgList Args;
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0);
RValue RV = RValue::get(Builder.CreateBitCast(LV.getAddress(),
Types.ConvertType(getContext().VoidPtrTy)));
Args.push_back(std::make_pair(RV, getContext().VoidPtrTy));
llvm::Value *Arg = LocalDeclMap[*OMD->param_begin()];
llvm::Value *ArgAsPtrTy =
Builder.CreateBitCast(Arg,
Types.ConvertType(getContext().VoidPtrTy));
RV = RValue::get(ArgAsPtrTy);
Args.push_back(std::make_pair(RV, getContext().VoidPtrTy));
// sizeof (Type of Ivar)
uint64_t Size = getContext().getTypeSize(Ivar->getType()) / 8;
llvm::Value *SizeVal =
llvm::ConstantInt::get(Types.ConvertType(getContext().LongTy), Size);
Args.push_back(std::make_pair(RValue::get(SizeVal),
getContext().LongTy));
llvm::Value *True =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1);
Args.push_back(std::make_pair(RValue::get(True), getContext().BoolTy));
llvm::Value *False =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 0);
Args.push_back(std::make_pair(RValue::get(False), getContext().BoolTy));
EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args,
FunctionType::ExtInfo()),
GetCopyStructFn, ReturnValueSlot(), Args);
} else {
// FIXME: Find a clean way to avoid AST node creation.
SourceLocation Loc = PD->getLocation();
ValueDecl *Self = OMD->getSelfDecl();
ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl();
DeclRefExpr Base(Self, Self->getType(), Loc);
ParmVarDecl *ArgDecl = *OMD->param_begin();
DeclRefExpr Arg(ArgDecl, ArgDecl->getType(), Loc);
ObjCIvarRefExpr IvarRef(Ivar, Ivar->getType(), Loc, &Base, true, true);
// The property type can differ from the ivar type in some situations with
// Objective-C pointer types, we can always bit cast the RHS in these cases.
if (getContext().getCanonicalType(Ivar->getType()) !=
getContext().getCanonicalType(ArgDecl->getType())) {
ImplicitCastExpr ArgCasted(Ivar->getType(), CastExpr::CK_BitCast, &Arg,
CXXBaseSpecifierArray(), false);
BinaryOperator Assign(&IvarRef, &ArgCasted, BinaryOperator::Assign,
Ivar->getType(), Loc);
EmitStmt(&Assign);
} else {
BinaryOperator Assign(&IvarRef, &Arg, BinaryOperator::Assign,
Ivar->getType(), Loc);
EmitStmt(&Assign);
}
}
FinishFunction();
}
void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
ObjCMethodDecl *MD,
bool ctor) {
llvm::SmallVector<CXXBaseOrMemberInitializer *, 8> IvarInitializers;
MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
StartObjCMethod(MD, IMP->getClassInterface());
for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
E = IMP->init_end(); B != E; ++B) {
CXXBaseOrMemberInitializer *Member = (*B);
IvarInitializers.push_back(Member);
}
if (ctor) {
for (unsigned I = 0, E = IvarInitializers.size(); I != E; ++I) {
CXXBaseOrMemberInitializer *IvarInit = IvarInitializers[I];
FieldDecl *Field = IvarInit->getMember();
QualType FieldType = Field->getType();
ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
LoadObjCSelf(), Ivar, 0);
EmitAggExpr(IvarInit->getInit(), LV.getAddress(),
LV.isVolatileQualified(), false, true);
}
// constructor returns 'self'.
CodeGenTypes &Types = CGM.getTypes();
QualType IdTy(CGM.getContext().getObjCIdType());
llvm::Value *SelfAsId =
Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
}
else {
// dtor
for (size_t i = IvarInitializers.size(); i > 0; --i) {
FieldDecl *Field = IvarInitializers[i - 1]->getMember();
QualType FieldType = Field->getType();
const ConstantArrayType *Array =
getContext().getAsConstantArrayType(FieldType);
if (Array)
FieldType = getContext().getBaseElementType(FieldType);
ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
LoadObjCSelf(), Ivar, 0);
const RecordType *RT = FieldType->getAs<RecordType>();
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(getContext());
if (!Dtor->isTrivial())
if (Array) {
const llvm::Type *BasePtr = ConvertType(FieldType);
BasePtr = llvm::PointerType::getUnqual(BasePtr);
llvm::Value *BaseAddrPtr =
Builder.CreateBitCast(LV.getAddress(), BasePtr);
EmitCXXAggrDestructorCall(Dtor,
Array, BaseAddrPtr);
}
else
EmitCXXDestructorCall(Dtor,
Dtor_Complete, /*ForVirtualBase=*/false,
LV.getAddress());
}
}
FinishFunction();
}
bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
it++; it++;
const ABIArgInfo &AI = it->info;
// FIXME. Is this sufficient check?
return (AI.getKind() == ABIArgInfo::Indirect);
}
bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC)
return false;
if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
return FDTTy->getDecl()->hasObjectMember();
return false;
}
llvm::Value *CodeGenFunction::LoadObjCSelf() {
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
// See if we need to lazily forward self inside a block literal.
BlockForwardSelf();
return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
}
QualType CodeGenFunction::TypeOfSelfObject() {
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
This patch includes a conceptually simple, but very intrusive/pervasive change. The idea is to segregate Objective-C "object" pointers from general C pointers (utilizing the recently added ObjCObjectPointerType). The fun starts in Sema::GetTypeForDeclarator(), where "SomeInterface *" is now represented by a single AST node (rather than a PointerType whose Pointee is an ObjCInterfaceType). Since a significant amount of code assumed ObjC object pointers where based on C pointers/structs, this patch is very tedious. It should also explain why it is hard to accomplish this in smaller, self-contained patches. This patch does most of the "heavy lifting" related to moving from PointerType->ObjCObjectPointerType. It doesn't include all potential "cleanups". The good news is additional cleanups can be done later (some are noted in the code). This patch is so large that I didn't want to include any changes that are purely aesthetic. By making the ObjC types truly built-in, they are much easier to work with (and require fewer "hacks"). For example, there is no need for ASTContext::isObjCIdStructType() or ASTContext::isObjCClassStructType()! We believe this change (and the follow-up cleanups) will pay dividends over time. Given the amount of code change, I do expect some fallout from this change (though it does pass all of the clang tests). If you notice any problems, please let us know asap! Thanks. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@75314 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-11 03:34:53 +04:00
const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
getContext().getCanonicalType(selfDecl->getType()));
return PTy->getPointeeType();
}
RValue CodeGenFunction::EmitObjCSuperPropertyGet(const Expr *Exp,
const Selector &S) {
llvm::Value *Receiver = LoadObjCSelf();
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
bool isClassMessage = OMD->isClassMethod();
bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
return CGM.getObjCRuntime().GenerateMessageSendSuper(*this,
Exp->getType(),
S,
OMD->getClassInterface(),
isCategoryImpl,
Receiver,
isClassMessage,
CallArgList());
}
RValue CodeGenFunction::EmitObjCPropertyGet(const Expr *Exp) {
Exp = Exp->IgnoreParens();
// FIXME: Split it into two separate routines.
if (const ObjCPropertyRefExpr *E = dyn_cast<ObjCPropertyRefExpr>(Exp)) {
Selector S = E->getProperty()->getGetterName();
if (isa<ObjCSuperExpr>(E->getBase()))
return EmitObjCSuperPropertyGet(E, S);
return CGM.getObjCRuntime().
GenerateMessageSend(*this, Exp->getType(), S,
EmitScalarExpr(E->getBase()),
CallArgList());
} else {
const ObjCImplicitSetterGetterRefExpr *KE =
cast<ObjCImplicitSetterGetterRefExpr>(Exp);
Selector S = KE->getGetterMethod()->getSelector();
llvm::Value *Receiver;
if (KE->getInterfaceDecl()) {
const ObjCInterfaceDecl *OID = KE->getInterfaceDecl();
Receiver = CGM.getObjCRuntime().GetClass(Builder, OID);
} else if (isa<ObjCSuperExpr>(KE->getBase()))
return EmitObjCSuperPropertyGet(KE, S);
else
Receiver = EmitScalarExpr(KE->getBase());
return CGM.getObjCRuntime().
GenerateMessageSend(*this, Exp->getType(), S,
Receiver,
CallArgList(), KE->getInterfaceDecl());
}
}
void CodeGenFunction::EmitObjCSuperPropertySet(const Expr *Exp,
const Selector &S,
RValue Src) {
CallArgList Args;
llvm::Value *Receiver = LoadObjCSelf();
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
bool isClassMessage = OMD->isClassMethod();
bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
Args.push_back(std::make_pair(Src, Exp->getType()));
CGM.getObjCRuntime().GenerateMessageSendSuper(*this,
Exp->getType(),
S,
OMD->getClassInterface(),
isCategoryImpl,
Receiver,
isClassMessage,
Args);
return;
}
void CodeGenFunction::EmitObjCPropertySet(const Expr *Exp,
RValue Src) {
// FIXME: Split it into two separate routines.
if (const ObjCPropertyRefExpr *E = dyn_cast<ObjCPropertyRefExpr>(Exp)) {
Selector S = E->getProperty()->getSetterName();
if (isa<ObjCSuperExpr>(E->getBase())) {
EmitObjCSuperPropertySet(E, S, Src);
return;
}
CallArgList Args;
Args.push_back(std::make_pair(Src, E->getType()));
CGM.getObjCRuntime().GenerateMessageSend(*this, getContext().VoidTy, S,
EmitScalarExpr(E->getBase()),
Args);
} else if (const ObjCImplicitSetterGetterRefExpr *E =
dyn_cast<ObjCImplicitSetterGetterRefExpr>(Exp)) {
Selector S = E->getSetterMethod()->getSelector();
CallArgList Args;
llvm::Value *Receiver;
if (E->getInterfaceDecl()) {
const ObjCInterfaceDecl *OID = E->getInterfaceDecl();
Receiver = CGM.getObjCRuntime().GetClass(Builder, OID);
} else if (isa<ObjCSuperExpr>(E->getBase())) {
EmitObjCSuperPropertySet(E, S, Src);
return;
} else
Receiver = EmitScalarExpr(E->getBase());
Args.push_back(std::make_pair(Src, E->getType()));
CGM.getObjCRuntime().GenerateMessageSend(*this, getContext().VoidTy, S,
Receiver,
Args, E->getInterfaceDecl());
} else
assert (0 && "bad expression node in EmitObjCPropertySet");
}
void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
llvm::Constant *EnumerationMutationFn =
CGM.getObjCRuntime().EnumerationMutationFunction();
llvm::Value *DeclAddress;
QualType ElementTy;
if (!EnumerationMutationFn) {
CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
return;
}
if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
EmitStmt(SD);
assert(HaveInsertPoint() && "DeclStmt destroyed insert point!");
const Decl* D = SD->getSingleDecl();
ElementTy = cast<ValueDecl>(D)->getType();
DeclAddress = LocalDeclMap[D];
} else {
ElementTy = cast<Expr>(S.getElement())->getType();
DeclAddress = 0;
}
// Fast enumeration state.
QualType StateTy = getContext().getObjCFastEnumerationStateType();
llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
EmitMemSetToZero(StatePtr, StateTy);
// Number of elements in the items array.
static const unsigned NumItems = 16;
// Get selector
IdentifierInfo *II[] = {
&CGM.getContext().Idents.get("countByEnumeratingWithState"),
&CGM.getContext().Idents.get("objects"),
&CGM.getContext().Idents.get("count")
};
Selector FastEnumSel =
CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
QualType ItemsTy =
getContext().getConstantArrayType(getContext().getObjCIdType(),
llvm::APInt(32, NumItems),
ArrayType::Normal, 0);
llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
llvm::Value *Collection = EmitScalarExpr(S.getCollection());
CallArgList Args;
Args.push_back(std::make_pair(RValue::get(StatePtr),
getContext().getPointerType(StateTy)));
Args.push_back(std::make_pair(RValue::get(ItemsPtr),
getContext().getPointerType(ItemsTy)));
const llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
Args.push_back(std::make_pair(RValue::get(Count),
getContext().UnsignedLongTy));
RValue CountRV =
CGM.getObjCRuntime().GenerateMessageSend(*this,
getContext().UnsignedLongTy,
FastEnumSel,
Collection, Args);
llvm::Value *LimitPtr = CreateMemTemp(getContext().UnsignedLongTy,
"limit.ptr");
Builder.CreateStore(CountRV.getScalarVal(), LimitPtr);
llvm::BasicBlock *NoElements = createBasicBlock("noelements");
llvm::BasicBlock *SetStartMutations = createBasicBlock("setstartmutations");
llvm::Value *Limit = Builder.CreateLoad(LimitPtr);
llvm::Value *Zero = llvm::Constant::getNullValue(UnsignedLongLTy);
llvm::Value *IsZero = Builder.CreateICmpEQ(Limit, Zero, "iszero");
Builder.CreateCondBr(IsZero, NoElements, SetStartMutations);
EmitBlock(SetStartMutations);
llvm::Value *StartMutationsPtr = CreateMemTemp(getContext().UnsignedLongTy);
llvm::Value *StateMutationsPtrPtr =
Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
"mutationsptr");
llvm::Value *StateMutations = Builder.CreateLoad(StateMutationsPtr,
"mutations");
Builder.CreateStore(StateMutations, StartMutationsPtr);
llvm::BasicBlock *LoopStart = createBasicBlock("loopstart");
EmitBlock(LoopStart);
llvm::Value *CounterPtr = CreateMemTemp(getContext().UnsignedLongTy,
"counter.ptr");
Builder.CreateStore(Zero, CounterPtr);
llvm::BasicBlock *LoopBody = createBasicBlock("loopbody");
EmitBlock(LoopBody);
StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
StateMutations = Builder.CreateLoad(StateMutationsPtr, "statemutations");
llvm::Value *StartMutations = Builder.CreateLoad(StartMutationsPtr,
"mutations");
llvm::Value *MutationsEqual = Builder.CreateICmpEQ(StateMutations,
StartMutations,
"tobool");
llvm::BasicBlock *WasMutated = createBasicBlock("wasmutated");
llvm::BasicBlock *WasNotMutated = createBasicBlock("wasnotmutated");
Builder.CreateCondBr(MutationsEqual, WasNotMutated, WasMutated);
EmitBlock(WasMutated);
llvm::Value *V =
Builder.CreateBitCast(Collection,
ConvertType(getContext().getObjCIdType()),
"tmp");
CallArgList Args2;
Args2.push_back(std::make_pair(RValue::get(V),
getContext().getObjCIdType()));
// FIXME: We shouldn't need to get the function info here, the runtime already
// should have computed it to build the function.
EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2,
FunctionType::ExtInfo()),
EnumerationMutationFn, ReturnValueSlot(), Args2);
EmitBlock(WasNotMutated);
llvm::Value *StateItemsPtr =
Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
llvm::Value *Counter = Builder.CreateLoad(CounterPtr, "counter");
llvm::Value *EnumStateItems = Builder.CreateLoad(StateItemsPtr,
"stateitems");
llvm::Value *CurrentItemPtr =
Builder.CreateGEP(EnumStateItems, Counter, "currentitem.ptr");
llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr, "currentitem");
// Cast the item to the right type.
CurrentItem = Builder.CreateBitCast(CurrentItem,
ConvertType(ElementTy), "tmp");
if (!DeclAddress) {
LValue LV = EmitLValue(cast<Expr>(S.getElement()));
// Set the value to null.
Builder.CreateStore(CurrentItem, LV.getAddress());
} else
Builder.CreateStore(CurrentItem, DeclAddress);
// Increment the counter.
Counter = Builder.CreateAdd(Counter,
llvm::ConstantInt::get(UnsignedLongLTy, 1));
Builder.CreateStore(Counter, CounterPtr);
llvm::BasicBlock *LoopEnd = createBasicBlock("loopend");
llvm::BasicBlock *AfterBody = createBasicBlock("afterbody");
BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
EmitStmt(S.getBody());
BreakContinueStack.pop_back();
EmitBlock(AfterBody);
llvm::BasicBlock *FetchMore = createBasicBlock("fetchmore");
Counter = Builder.CreateLoad(CounterPtr);
Limit = Builder.CreateLoad(LimitPtr);
llvm::Value *IsLess = Builder.CreateICmpULT(Counter, Limit, "isless");
Builder.CreateCondBr(IsLess, LoopBody, FetchMore);
// Fetch more elements.
EmitBlock(FetchMore);
CountRV =
CGM.getObjCRuntime().GenerateMessageSend(*this,
getContext().UnsignedLongTy,
FastEnumSel,
Collection, Args);
Builder.CreateStore(CountRV.getScalarVal(), LimitPtr);
Limit = Builder.CreateLoad(LimitPtr);
IsZero = Builder.CreateICmpEQ(Limit, Zero, "iszero");
Builder.CreateCondBr(IsZero, NoElements, LoopStart);
// No more elements.
EmitBlock(NoElements);
if (!DeclAddress) {
// If the element was not a declaration, set it to be null.
LValue LV = EmitLValue(cast<Expr>(S.getElement()));
// Set the value to null.
Builder.CreateStore(llvm::Constant::getNullValue(ConvertType(ElementTy)),
LV.getAddress());
}
EmitBlock(LoopEnd);
}
void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
CGM.getObjCRuntime().EmitTryOrSynchronizedStmt(*this, S);
}
void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
CGM.getObjCRuntime().EmitThrowStmt(*this, S);
}
void CodeGenFunction::EmitObjCAtSynchronizedStmt(
const ObjCAtSynchronizedStmt &S) {
CGM.getObjCRuntime().EmitTryOrSynchronizedStmt(*this, S);
}
CGObjCRuntime::~CGObjCRuntime() {}