clang-1/lib/Sema/SemaCXXScopeSpec.cpp

307 строки
12 KiB
C++
Исходник Обычный вид История

//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements C++ semantic analysis for scope specifiers.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
Introduce a representation for types that we referred to via a qualified name, e.g., foo::x so that we retain the nested-name-specifier as written in the source code and can reproduce that qualified name when printing the types back (e.g., in diagnostics). This is PR3493, which won't be complete until finished the other tasks mentioned near the end of this commit. The parser's representation of nested-name-specifiers, CXXScopeSpec, is now a bit fatter, because it needs to contain the scopes that precede each '::' and keep track of whether the global scoping operator '::' was at the beginning. For example, we need to keep track of the leading '::', 'foo', and 'bar' in ::foo::bar::x The Action's CXXScopeTy * is no longer a DeclContext *. It's now the opaque version of the new NestedNameSpecifier, which contains a single component of a nested-name-specifier (either a DeclContext * or a Type *, bitmangled). The new sugar type QualifiedNameType composes a sequence of NestedNameSpecifiers with a representation of the type we're actually referring to. At present, we only build QualifiedNameType nodes within Sema::getTypeName. This will be extended to other type-constructing actions (e.g., ActOnClassTemplateId). Also on the way: QualifiedDeclRefExprs will also store a sequence of NestedNameSpecifiers, so that we can print out the property nested-name-specifier. I expect to also use this for handling dependent names like Fibonacci<I - 1>::value. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67265 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-19 03:18:19 +03:00
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/Parse/DeclSpec.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;
Introduce a representation for types that we referred to via a qualified name, e.g., foo::x so that we retain the nested-name-specifier as written in the source code and can reproduce that qualified name when printing the types back (e.g., in diagnostics). This is PR3493, which won't be complete until finished the other tasks mentioned near the end of this commit. The parser's representation of nested-name-specifiers, CXXScopeSpec, is now a bit fatter, because it needs to contain the scopes that precede each '::' and keep track of whether the global scoping operator '::' was at the beginning. For example, we need to keep track of the leading '::', 'foo', and 'bar' in ::foo::bar::x The Action's CXXScopeTy * is no longer a DeclContext *. It's now the opaque version of the new NestedNameSpecifier, which contains a single component of a nested-name-specifier (either a DeclContext * or a Type *, bitmangled). The new sugar type QualifiedNameType composes a sequence of NestedNameSpecifiers with a representation of the type we're actually referring to. At present, we only build QualifiedNameType nodes within Sema::getTypeName. This will be extended to other type-constructing actions (e.g., ActOnClassTemplateId). Also on the way: QualifiedDeclRefExprs will also store a sequence of NestedNameSpecifiers, so that we can print out the property nested-name-specifier. I expect to also use this for handling dependent names like Fibonacci<I - 1>::value. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67265 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-19 03:18:19 +03:00
/// \brief Compute the DeclContext that is associated with the given
/// scope specifier.
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS) {
if (!SS.isSet() || SS.isInvalid())
return 0;
NestedNameSpecifier *NNS
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
if (NNS->isDependent()) {
// If this nested-name-specifier refers to the current
// instantiation, return its DeclContext.
if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
return Record;
else
return 0;
}
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
assert(false && "Dependent nested-name-specifier has no DeclContext");
break;
case NestedNameSpecifier::Namespace:
return NNS->getAsNamespace();
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
const TagType *Tag = NNS->getAsType()->getAsTagType();
assert(Tag && "Non-tag type in nested-name-specifier");
return Tag->getDecl();
} break;
case NestedNameSpecifier::Global:
return Context.getTranslationUnitDecl();
}
// Required to silence a GCC warning.
return 0;
}
bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
if (!SS.isSet() || SS.isInvalid())
return false;
NestedNameSpecifier *NNS
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
return NNS->isDependent();
}
// \brief Determine whether this C++ scope specifier refers to an
// unknown specialization, i.e., a dependent type that is not the
// current instantiation.
bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
if (!isDependentScopeSpecifier(SS))
return false;
NestedNameSpecifier *NNS
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
return getCurrentInstantiationOf(NNS) == 0;
}
/// \brief If the given nested name specifier refers to the current
/// instantiation, return the declaration that corresponds to that
/// current instantiation (C++0x [temp.dep.type]p1).
///
/// \param NNS a dependent nested name specifier.
CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
assert(getLangOptions().CPlusPlus && "Only callable in C++");
assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
QualType T = QualType(NNS->getAsType(), 0);
// If the nested name specifier does not refer to a type, then it
// does not refer to the current instantiation.
if (T.isNull())
return 0;
T = Context.getCanonicalType(T);
for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getParent()) {
// If we've hit a namespace or the global scope, then the
// nested-name-specifier can't refer to the current instantiation.
if (Ctx->isFileContext())
return 0;
// Skip non-class contexts.
CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
if (!Record)
continue;
// If this record type is not dependent,
if (!Record->isDependentType())
return 0;
// C++ [temp.dep.type]p1:
//
// In the definition of a class template, a nested class of a
// class template, a member of a class template, or a member of a
// nested class of a class template, a name refers to the current
// instantiation if it is
// -- the injected-class-name (9) of the class template or
// nested class,
// -- in the definition of a primary class template, the name
// of the class template followed by the template argument
// list of the primary template (as described below)
// enclosed in <>,
// -- in the definition of a nested class of a class template,
// the name of the nested class referenced as a member of
// the current instantiation, or
// -- in the definition of a partial specialization, the name
// of the class template followed by the template argument
// list of the partial specialization enclosed in <>. If
// the nth template parameter is a parameter pack, the nth
// template argument is a pack expansion (14.6.3) whose
// pattern is the name of the parameter pack. (FIXME)
//
// All of these options come down to having the
// nested-name-specifier type that is equivalent to the
// injected-class-name of one of the types that is currently in
// our context.
if (Context.getTypeDeclType(Record) == T)
return Record;
if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) {
QualType InjectedClassName
= Template->getInjectedClassNameType(Context);
if (T == Context.getCanonicalType(InjectedClassName))
return Template->getTemplatedDecl();
}
}
return 0;
}
/// \brief Require that the context specified by SS be complete.
///
/// If SS refers to a type, this routine checks whether the type is
/// complete enough (or can be made complete enough) for name lookup
/// into the DeclContext. A type that is not yet completed can be
/// considered "complete enough" if it is a class/struct/union/enum
/// that is currently being defined. Or, if we have a type that names
/// a class template specialization that is not a complete type, we
/// will attempt to instantiate that class template.
bool Sema::RequireCompleteDeclContext(const CXXScopeSpec &SS) {
if (!SS.isSet() || SS.isInvalid())
return false;
Introduce a representation for types that we referred to via a qualified name, e.g., foo::x so that we retain the nested-name-specifier as written in the source code and can reproduce that qualified name when printing the types back (e.g., in diagnostics). This is PR3493, which won't be complete until finished the other tasks mentioned near the end of this commit. The parser's representation of nested-name-specifiers, CXXScopeSpec, is now a bit fatter, because it needs to contain the scopes that precede each '::' and keep track of whether the global scoping operator '::' was at the beginning. For example, we need to keep track of the leading '::', 'foo', and 'bar' in ::foo::bar::x The Action's CXXScopeTy * is no longer a DeclContext *. It's now the opaque version of the new NestedNameSpecifier, which contains a single component of a nested-name-specifier (either a DeclContext * or a Type *, bitmangled). The new sugar type QualifiedNameType composes a sequence of NestedNameSpecifiers with a representation of the type we're actually referring to. At present, we only build QualifiedNameType nodes within Sema::getTypeName. This will be extended to other type-constructing actions (e.g., ActOnClassTemplateId). Also on the way: QualifiedDeclRefExprs will also store a sequence of NestedNameSpecifiers, so that we can print out the property nested-name-specifier. I expect to also use this for handling dependent names like Fibonacci<I - 1>::value. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67265 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-19 03:18:19 +03:00
DeclContext *DC = computeDeclContext(SS);
if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
// If we're currently defining this type, then lookup into the
// type is okay: don't complain that it isn't complete yet.
const TagType *TagT = Context.getTypeDeclType(Tag)->getAsTagType();
if (TagT->isBeingDefined())
return false;
// The type must be complete.
return RequireCompleteType(SS.getRange().getBegin(),
Context.getTypeDeclType(Tag),
diag::err_incomplete_nested_name_spec,
SS.getRange());
}
return false;
}
/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
/// global scope ('::').
Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
SourceLocation CCLoc) {
return NestedNameSpecifier::GlobalSpecifier(Context);
}
/// ActOnCXXNestedNameSpecifier - Called during parsing of a
/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
/// we want to resolve "bar::". 'SS' is empty or the previously parsed
/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
/// Returns a CXXScopeTy* object representing the C++ scope.
Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
const CXXScopeSpec &SS,
SourceLocation IdLoc,
SourceLocation CCLoc,
IdentifierInfo &II) {
NestedNameSpecifier *Prefix
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
// If the prefix already refers to an unknown specialization, there
// is no name lookup to perform. Just build the resulting
// nested-name-specifier.
if (Prefix && isUnknownSpecialization(SS))
return NestedNameSpecifier::Create(Context, Prefix, &II);
NamedDecl *SD = LookupParsedName(S, &SS, &II, LookupNestedNameSpecifierName);
if (SD) {
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
return NestedNameSpecifier::Create(Context, Prefix, Namespace);
if (TypeDecl *Type = dyn_cast<TypeDecl>(SD)) {
// Determine whether we have a class (or, in C++0x, an enum) or
// a typedef thereof. If so, build the nested-name-specifier.
QualType T = Context.getTypeDeclType(Type);
bool AcceptableType = false;
if (T->isDependentType())
AcceptableType = true;
else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
if (TD->getUnderlyingType()->isRecordType() ||
(getLangOptions().CPlusPlus0x &&
TD->getUnderlyingType()->isEnumeralType()))
AcceptableType = true;
} else if (isa<RecordDecl>(Type) ||
(getLangOptions().CPlusPlus0x && isa<EnumDecl>(Type)))
AcceptableType = true;
if (AcceptableType)
return NestedNameSpecifier::Create(Context, Prefix, false,
T.getTypePtr());
}
if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
return NestedNameSpecifier::Create(Context, Prefix,
Alias->getNamespace());
// Fall through to produce an error: we found something that isn't
// a class or a namespace.
}
// If we didn't find anything during our lookup, try again with
// ordinary name lookup, which can help us produce better error
// messages.
if (!SD)
SD = LookupParsedName(S, &SS, &II, LookupOrdinaryName);
unsigned DiagID;
if (SD)
DiagID = diag::err_expected_class_or_namespace;
else if (SS.isSet())
DiagID = diag::err_typecheck_no_member;
else
DiagID = diag::err_undeclared_var_use;
if (SS.isSet())
Diag(IdLoc, DiagID) << &II << SS.getRange();
else
Diag(IdLoc, DiagID) << &II;
return 0;
}
Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
const CXXScopeSpec &SS,
TypeTy *Ty,
SourceRange TypeRange,
SourceLocation CCLoc) {
NestedNameSpecifier *Prefix
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
QualType T = QualType::getFromOpaquePtr(Ty);
return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
T.getTypePtr());
}
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
void Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
if (DeclContext *DC = computeDeclContext(SS))
EnterDeclaratorContext(S, DC);
else
const_cast<CXXScopeSpec&>(SS).setScopeRep(0);
}
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
assert((SS.isInvalid() || S->getEntity() == computeDeclContext(SS)) &&
"Context imbalance!");
if (!SS.isInvalid())
ExitDeclaratorContext(S);
}