clang-1/include/clang/Sema/Lookup.h

689 строки
20 KiB
C
Исходник Обычный вид История

//===--- Lookup.h - Classes for name lookup ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LookupResult class, which is integral to
// Sema's name-lookup subsystem.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_LOOKUP_H
#define LLVM_CLANG_SEMA_LOOKUP_H
#include "clang/Sema/Sema.h"
#include "clang/AST/DeclCXX.h"
namespace clang {
/// @brief Represents the results of name lookup.
///
/// An instance of the LookupResult class captures the results of a
/// single name lookup, which can return no result (nothing found),
/// a single declaration, a set of overloaded functions, or an
/// ambiguity. Use the getKind() method to determine which of these
/// results occurred for a given lookup.
class LookupResult {
public:
enum LookupResultKind {
/// @brief No entity found met the criteria.
NotFound = 0,
/// @brief No entity found met the criteria within the current
/// instantiation,, but there were dependent base classes of the
/// current instantiation that could not be searched.
NotFoundInCurrentInstantiation,
/// @brief Name lookup found a single declaration that met the
/// criteria. getFoundDecl() will return this declaration.
Found,
/// @brief Name lookup found a set of overloaded functions that
/// met the criteria.
FoundOverloaded,
/// @brief Name lookup found an unresolvable value declaration
/// and cannot yet complete. This only happens in C++ dependent
/// contexts with dependent using declarations.
FoundUnresolvedValue,
/// @brief Name lookup results in an ambiguity; use
/// getAmbiguityKind to figure out what kind of ambiguity
/// we have.
Ambiguous
};
enum AmbiguityKind {
/// Name lookup results in an ambiguity because multiple
/// entities that meet the lookup criteria were found in
/// subobjects of different types. For example:
/// @code
/// struct A { void f(int); }
/// struct B { void f(double); }
/// struct C : A, B { };
/// void test(C c) {
/// c.f(0); // error: A::f and B::f come from subobjects of different
/// // types. overload resolution is not performed.
/// }
/// @endcode
AmbiguousBaseSubobjectTypes,
/// Name lookup results in an ambiguity because multiple
/// nonstatic entities that meet the lookup criteria were found
/// in different subobjects of the same type. For example:
/// @code
/// struct A { int x; };
/// struct B : A { };
/// struct C : A { };
/// struct D : B, C { };
/// int test(D d) {
/// return d.x; // error: 'x' is found in two A subobjects (of B and C)
/// }
/// @endcode
AmbiguousBaseSubobjects,
/// Name lookup results in an ambiguity because multiple definitions
/// of entity that meet the lookup criteria were found in different
/// declaration contexts.
/// @code
/// namespace A {
/// int i;
/// namespace B { int i; }
/// int test() {
/// using namespace B;
/// return i; // error 'i' is found in namespace A and A::B
/// }
/// }
/// @endcode
AmbiguousReference,
/// Name lookup results in an ambiguity because an entity with a
/// tag name was hidden by an entity with an ordinary name from
/// a different context.
/// @code
/// namespace A { struct Foo {}; }
/// namespace B { void Foo(); }
/// namespace C {
/// using namespace A;
/// using namespace B;
/// }
/// void test() {
/// C::Foo(); // error: tag 'A::Foo' is hidden by an object in a
/// // different namespace
/// }
/// @endcode
AmbiguousTagHiding
};
/// A little identifier for flagging temporary lookup results.
enum TemporaryToken {
Temporary
};
typedef UnresolvedSetImpl::iterator iterator;
LookupResult(Sema &SemaRef, const DeclarationNameInfo &NameInfo,
Sema::LookupNameKind LookupKind,
Sema::RedeclarationKind Redecl = Sema::NotForRedeclaration)
: ResultKind(NotFound),
Paths(0),
NamingClass(0),
SemaRef(SemaRef),
NameInfo(NameInfo),
LookupKind(LookupKind),
IDNS(0),
Redecl(Redecl != Sema::NotForRedeclaration),
HideTags(true),
Diagnose(Redecl == Sema::NotForRedeclaration)
{
configure();
}
// TODO: consider whether this constructor should be restricted to take
// as input a const IndentifierInfo* (instead of Name),
// forcing other cases towards the constructor taking a DNInfo.
LookupResult(Sema &SemaRef, DeclarationName Name,
SourceLocation NameLoc, Sema::LookupNameKind LookupKind,
Sema::RedeclarationKind Redecl = Sema::NotForRedeclaration)
: ResultKind(NotFound),
Paths(0),
NamingClass(0),
SemaRef(SemaRef),
NameInfo(Name, NameLoc),
LookupKind(LookupKind),
IDNS(0),
Redecl(Redecl != Sema::NotForRedeclaration),
HideTags(true),
Diagnose(Redecl == Sema::NotForRedeclaration)
{
configure();
}
/// Creates a temporary lookup result, initializing its core data
/// using the information from another result. Diagnostics are always
/// disabled.
LookupResult(TemporaryToken _, const LookupResult &Other)
: ResultKind(NotFound),
Paths(0),
NamingClass(0),
SemaRef(Other.SemaRef),
NameInfo(Other.NameInfo),
LookupKind(Other.LookupKind),
IDNS(Other.IDNS),
Redecl(Other.Redecl),
HideTags(Other.HideTags),
Diagnose(false)
{}
~LookupResult() {
if (Diagnose) diagnose();
if (Paths) deletePaths(Paths);
}
/// Gets the name info to look up.
const DeclarationNameInfo &getLookupNameInfo() const {
return NameInfo;
}
/// \brief Sets the name info to look up.
void setLookupNameInfo(const DeclarationNameInfo &NameInfo) {
this->NameInfo = NameInfo;
}
/// Gets the name to look up.
DeclarationName getLookupName() const {
return NameInfo.getName();
}
/// \brief Sets the name to look up.
void setLookupName(DeclarationName Name) {
NameInfo.setName(Name);
}
/// Gets the kind of lookup to perform.
Sema::LookupNameKind getLookupKind() const {
return LookupKind;
}
/// True if this lookup is just looking for an existing declaration.
bool isForRedeclaration() const {
return Redecl;
}
/// Sets whether tag declarations should be hidden by non-tag
/// declarations during resolution. The default is true.
void setHideTags(bool Hide) {
HideTags = Hide;
}
bool isAmbiguous() const {
return getResultKind() == Ambiguous;
}
/// Determines if this names a single result which is not an
/// unresolved value using decl. If so, it is safe to call
/// getFoundDecl().
bool isSingleResult() const {
return getResultKind() == Found;
}
/// Determines if the results are overloaded.
bool isOverloadedResult() const {
return getResultKind() == FoundOverloaded;
}
bool isUnresolvableResult() const {
return getResultKind() == FoundUnresolvedValue;
}
LookupResultKind getResultKind() const {
sanity();
return ResultKind;
}
AmbiguityKind getAmbiguityKind() const {
assert(isAmbiguous());
return Ambiguity;
}
const UnresolvedSetImpl &asUnresolvedSet() const {
return Decls;
}
iterator begin() const { return iterator(Decls.begin()); }
iterator end() const { return iterator(Decls.end()); }
/// \brief Return true if no decls were found
bool empty() const { return Decls.empty(); }
/// \brief Return the base paths structure that's associated with
/// these results, or null if none is.
CXXBasePaths *getBasePaths() const {
return Paths;
}
/// \brief Tests whether the given declaration is acceptable.
bool isAcceptableDecl(NamedDecl *D) const {
return D->isInIdentifierNamespace(IDNS);
}
/// \brief Returns the identifier namespace mask for this lookup.
unsigned getIdentifierNamespace() const {
return IDNS;
}
/// \brief Returns whether these results arose from performing a
/// lookup into a class.
bool isClassLookup() const {
return NamingClass != 0;
}
/// \brief Set whether the name lookup is triggered by a
/// using declaration.
void setUsingDeclaration(bool U) {
UsingDeclaration = U;
}
/// \brief Returns whether the name lookup is triggered by a
/// using declaration.
bool isUsingDeclaration() const {
return UsingDeclaration;
}
/// \brief Returns the 'naming class' for this lookup, i.e. the
/// class which was looked into to find these results.
///
/// C++0x [class.access.base]p5:
/// The access to a member is affected by the class in which the
/// member is named. This naming class is the class in which the
/// member name was looked up and found. [Note: this class can be
/// explicit, e.g., when a qualified-id is used, or implicit,
/// e.g., when a class member access operator (5.2.5) is used
/// (including cases where an implicit "this->" is added). If both
/// a class member access operator and a qualified-id are used to
/// name the member (as in p->T::m), the class naming the member
/// is the class named by the nested-name-specifier of the
/// qualified-id (that is, T). -- end note ]
///
/// This is set by the lookup routines when they find results in a class.
CXXRecordDecl *getNamingClass() const {
return NamingClass;
}
/// \brief Sets the 'naming class' for this lookup.
void setNamingClass(CXXRecordDecl *Record) {
NamingClass = Record;
}
/// \brief Returns the base object type associated with this lookup;
/// important for [class.protected]. Most lookups do not have an
/// associated base object.
QualType getBaseObjectType() const {
return BaseObjectType;
}
/// \brief Sets the base object type for this lookup.
void setBaseObjectType(QualType T) {
BaseObjectType = T;
}
/// \brief Add a declaration to these results with its natural access.
/// Does not test the acceptance criteria.
void addDecl(NamedDecl *D) {
addDecl(D, D->getAccess());
}
/// \brief Add a declaration to these results with the given access.
/// Does not test the acceptance criteria.
void addDecl(NamedDecl *D, AccessSpecifier AS) {
Decls.addDecl(D, AS);
ResultKind = Found;
}
/// \brief Add all the declarations from another set of lookup
/// results.
void addAllDecls(const LookupResult &Other) {
Decls.append(Other.Decls.begin(), Other.Decls.end());
ResultKind = Found;
}
/// \brief Determine whether no result was found because we could not
/// search into dependent base classes of the current instantiation.
bool wasNotFoundInCurrentInstantiation() const {
return ResultKind == NotFoundInCurrentInstantiation;
}
/// \brief Note that while no result was found in the current instantiation,
/// there were dependent base classes that could not be searched.
void setNotFoundInCurrentInstantiation() {
assert(ResultKind == NotFound && Decls.empty());
ResultKind = NotFoundInCurrentInstantiation;
}
/// \brief Resolves the result kind of the lookup, possibly hiding
/// decls.
///
/// This should be called in any environment where lookup might
/// generate multiple lookup results.
void resolveKind();
/// \brief Re-resolves the result kind of the lookup after a set of
/// removals has been performed.
void resolveKindAfterFilter() {
if (Decls.empty()) {
if (ResultKind != NotFoundInCurrentInstantiation)
ResultKind = NotFound;
if (Paths) {
deletePaths(Paths);
Paths = 0;
}
} else {
AmbiguityKind SavedAK = Ambiguity;
ResultKind = Found;
resolveKind();
// If we didn't make the lookup unambiguous, restore the old
// ambiguity kind.
if (ResultKind == Ambiguous) {
Ambiguity = SavedAK;
} else if (Paths) {
deletePaths(Paths);
Paths = 0;
}
}
}
template <class DeclClass>
DeclClass *getAsSingle() const {
if (getResultKind() != Found) return 0;
return dyn_cast<DeclClass>(getFoundDecl());
}
/// \brief Fetch the unique decl found by this lookup. Asserts
/// that one was found.
///
/// This is intended for users who have examined the result kind
/// and are certain that there is only one result.
NamedDecl *getFoundDecl() const {
assert(getResultKind() == Found
&& "getFoundDecl called on non-unique result");
return (*begin())->getUnderlyingDecl();
}
/// Fetches a representative decl. Useful for lazy diagnostics.
NamedDecl *getRepresentativeDecl() const {
assert(!Decls.empty() && "cannot get representative of empty set");
return *begin();
}
/// \brief Asks if the result is a single tag decl.
bool isSingleTagDecl() const {
return getResultKind() == Found && isa<TagDecl>(getFoundDecl());
}
/// \brief Make these results show that the name was found in
/// base classes of different types.
///
/// The given paths object is copied and invalidated.
void setAmbiguousBaseSubobjectTypes(CXXBasePaths &P);
/// \brief Make these results show that the name was found in
/// distinct base classes of the same type.
///
/// The given paths object is copied and invalidated.
void setAmbiguousBaseSubobjects(CXXBasePaths &P);
/// \brief Make these results show that the name was found in
/// different contexts and a tag decl was hidden by an ordinary
/// decl in a different context.
void setAmbiguousQualifiedTagHiding() {
setAmbiguous(AmbiguousTagHiding);
}
/// \brief Clears out any current state.
void clear() {
ResultKind = NotFound;
Decls.clear();
if (Paths) deletePaths(Paths);
Paths = NULL;
NamingClass = 0;
}
/// \brief Clears out any current state and re-initializes for a
/// different kind of lookup.
void clear(Sema::LookupNameKind Kind) {
clear();
LookupKind = Kind;
configure();
}
/// \brief Change this lookup's redeclaration kind.
void setRedeclarationKind(Sema::RedeclarationKind RK) {
Redecl = RK;
configure();
}
void print(llvm::raw_ostream &);
/// Suppress the diagnostics that would normally fire because of this
/// lookup. This happens during (e.g.) redeclaration lookups.
void suppressDiagnostics() {
Diagnose = false;
}
/// Determines whether this lookup is suppressing diagnostics.
bool isSuppressingDiagnostics() const {
return !Diagnose;
}
/// Sets a 'context' source range.
void setContextRange(SourceRange SR) {
NameContextRange = SR;
}
/// Gets the source range of the context of this name; for C++
/// qualified lookups, this is the source range of the scope
/// specifier.
SourceRange getContextRange() const {
return NameContextRange;
}
/// Gets the location of the identifier. This isn't always defined:
/// sometimes we're doing lookups on synthesized names.
SourceLocation getNameLoc() const {
return NameInfo.getLoc();
}
/// \brief Get the Sema object that this lookup result is searching
/// with.
Sema &getSema() const { return SemaRef; }
/// A class for iterating through a result set and possibly
/// filtering out results. The results returned are possibly
/// sugared.
class Filter {
LookupResult &Results;
LookupResult::iterator I;
bool Changed;
bool CalledDone;
friend class LookupResult;
Filter(LookupResult &Results)
: Results(Results), I(Results.begin()), Changed(false), CalledDone(false)
{}
public:
~Filter() {
assert(CalledDone &&
"LookupResult::Filter destroyed without done() call");
}
bool hasNext() const {
return I != Results.end();
}
NamedDecl *next() {
assert(I != Results.end() && "next() called on empty filter");
return *I++;
}
/// Erase the last element returned from this iterator.
void erase() {
Results.Decls.erase(--I);
Changed = true;
}
/// Replaces the current entry with the given one, preserving the
/// access bits.
void replace(NamedDecl *D) {
Results.Decls.replace(I-1, D);
Changed = true;
}
/// Replaces the current entry with the given one.
void replace(NamedDecl *D, AccessSpecifier AS) {
Results.Decls.replace(I-1, D, AS);
Changed = true;
}
void done() {
assert(!CalledDone && "done() called twice");
CalledDone = true;
if (Changed)
Results.resolveKindAfterFilter();
}
};
/// Create a filter for this result set.
Filter makeFilter() {
return Filter(*this);
}
private:
void diagnose() {
if (isAmbiguous())
SemaRef.DiagnoseAmbiguousLookup(*this);
else if (isClassLookup() && SemaRef.getLangOptions().AccessControl)
SemaRef.CheckLookupAccess(*this);
}
void setAmbiguous(AmbiguityKind AK) {
ResultKind = Ambiguous;
Ambiguity = AK;
}
void addDeclsFromBasePaths(const CXXBasePaths &P);
void configure();
// Sanity checks.
void sanity() const;
bool sanityCheckUnresolved() const {
for (iterator I = begin(), E = end(); I != E; ++I)
if (isa<UnresolvedUsingValueDecl>(*I))
return true;
return false;
}
static void deletePaths(CXXBasePaths *);
// Results.
LookupResultKind ResultKind;
AmbiguityKind Ambiguity; // ill-defined unless ambiguous
UnresolvedSet<8> Decls;
CXXBasePaths *Paths;
CXXRecordDecl *NamingClass;
QualType BaseObjectType;
// Parameters.
Sema &SemaRef;
DeclarationNameInfo NameInfo;
SourceRange NameContextRange;
Sema::LookupNameKind LookupKind;
unsigned IDNS; // set by configure()
bool Redecl;
/// \brief True if tag declarations should be hidden if non-tags
/// are present
bool HideTags;
bool Diagnose;
/// \brief True if the lookup is triggered by a using declaration.
/// Necessary to handle a MSVC bug.
bool UsingDeclaration;
};
/// \brief Consumes visible declarations found when searching for
/// all visible names within a given scope or context.
///
/// This abstract class is meant to be subclassed by clients of \c
/// Sema::LookupVisibleDecls(), each of which should override the \c
/// FoundDecl() function to process declarations as they are found.
class VisibleDeclConsumer {
public:
/// \brief Destroys the visible declaration consumer.
virtual ~VisibleDeclConsumer();
/// \brief Invoked each time \p Sema::LookupVisibleDecls() finds a
/// declaration visible from the current scope or context.
///
/// \param ND the declaration found.
///
/// \param Hiding a declaration that hides the declaration \p ND,
/// or NULL if no such declaration exists.
///
/// \param InBaseClass whether this declaration was found in base
/// class of the context we searched.
virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
bool InBaseClass) = 0;
};
/// \brief A class for storing results from argument-dependent lookup.
class ADLResult {
private:
/// A map from canonical decls to the 'most recent' decl.
llvm::DenseMap<NamedDecl*, NamedDecl*> Decls;
public:
/// Adds a new ADL candidate to this map.
void insert(NamedDecl *D);
/// Removes any data associated with a given decl.
void erase(NamedDecl *D) {
Decls.erase(cast<NamedDecl>(D->getCanonicalDecl()));
}
class iterator {
typedef llvm::DenseMap<NamedDecl*,NamedDecl*>::iterator inner_iterator;
inner_iterator iter;
friend class ADLResult;
iterator(const inner_iterator &iter) : iter(iter) {}
public:
iterator() {}
iterator &operator++() { ++iter; return *this; }
iterator operator++(int) { return iterator(iter++); }
NamedDecl *operator*() const { return iter->second; }
bool operator==(const iterator &other) const { return iter == other.iter; }
bool operator!=(const iterator &other) const { return iter != other.iter; }
};
iterator begin() { return iterator(Decls.begin()); }
iterator end() { return iterator(Decls.end()); }
};
}
#endif