clang-1/include/clang/AST/ExprCXX.h

854 строки
30 KiB
C
Исходник Обычный вид История

//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses for C++ expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPRCXX_H
#define LLVM_CLANG_AST_EXPRCXX_H
#include "clang/Basic/TypeTraits.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Decl.h"
namespace clang {
class CXXConstructorDecl;
//===--------------------------------------------------------------------===//
// C++ Expressions.
//===--------------------------------------------------------------------===//
/// CXXOperatorCallExpr - Represents a call to an overloaded operator
/// written using operator syntax, e.g., "x + y" or "*p". While
/// semantically equivalent to a normal call, this AST node provides
/// better information about the syntactic representation of the call.
class CXXOperatorCallExpr : public CallExpr {
public:
CXXOperatorCallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
QualType t, SourceLocation operatorloc)
: CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc){}
/// getOperator - Returns the kind of overloaded operator that this
/// expression refers to.
OverloadedOperatorKind getOperator() const;
/// getOperatorLoc - Returns the location of the operator symbol in
/// the expression. When @c getOperator()==OO_Call, this is the
/// location of the right parentheses; when @c
/// getOperator()==OO_Subscript, this is the location of the right
/// bracket.
SourceLocation getOperatorLoc() const { return getRParenLoc(); }
virtual SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXOperatorCallExprClass;
}
static bool classof(const CXXOperatorCallExpr *) { return true; }
};
/// CXXMemberCallExpr - Represents a call to a member function that
/// may be written either with member call syntax (e.g., "obj.func()"
/// or "objptr->func()") or with normal function-call syntax
/// ("func()") within a member function that ends up calling a member
/// function. The callee in either case is a MemberExpr that contains
/// both the object argument and the member function, while the
/// arguments are the arguments within the parentheses (not including
/// the object argument).
class CXXMemberCallExpr : public CallExpr {
public:
CXXMemberCallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
QualType t, SourceLocation rparenloc)
: CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
/// getImplicitObjectArgument - Retrieves the implicit object
/// argument for the member call. For example, in "x.f(5)", this
/// operation would return "x".
Expr *getImplicitObjectArgument();
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXMemberCallExprClass;
}
static bool classof(const CXXMemberCallExpr *) { return true; }
};
/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
/// const_cast.
///
/// This abstract class is inherited by all of the classes
/// representing "named" casts, e.g., CXXStaticCastExpr,
/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
class CXXNamedCastExpr : public ExplicitCastExpr {
private:
SourceLocation Loc; // the location of the casting op
protected:
CXXNamedCastExpr(StmtClass SC, QualType ty, Expr *op, QualType writtenTy,
SourceLocation l)
: ExplicitCastExpr(SC, ty, op, writtenTy), Loc(l) {}
public:
const char *getCastName() const;
virtual SourceRange getSourceRange() const {
return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
}
static bool classof(const Stmt *T) {
switch (T->getStmtClass()) {
case CXXNamedCastExprClass:
case CXXStaticCastExprClass:
case CXXDynamicCastExprClass:
case CXXReinterpretCastExprClass:
case CXXConstCastExprClass:
return true;
default:
return false;
}
}
static bool classof(const CXXNamedCastExpr *) { return true; }
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXNamedCastExpr *CreateImpl(llvm::Deserializer& D, ASTContext& C,
StmtClass SC);
};
/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
///
/// This expression node represents a C++ static cast, e.g.,
/// @c static_cast<int>(1.0).
class CXXStaticCastExpr : public CXXNamedCastExpr {
public:
CXXStaticCastExpr(QualType ty, Expr *op, QualType writtenTy, SourceLocation l)
: CXXNamedCastExpr(CXXStaticCastExprClass, ty, op, writtenTy, l) {}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXStaticCastExprClass;
}
static bool classof(const CXXStaticCastExpr *) { return true; }
};
/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
/// determine how to perform the type cast.
///
/// This expression node represents a dynamic cast, e.g.,
/// @c dynamic_cast<Derived*>(BasePtr).
class CXXDynamicCastExpr : public CXXNamedCastExpr {
public:
CXXDynamicCastExpr(QualType ty, Expr *op, QualType writtenTy, SourceLocation l)
: CXXNamedCastExpr(CXXDynamicCastExprClass, ty, op, writtenTy, l) {}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDynamicCastExprClass;
}
static bool classof(const CXXDynamicCastExpr *) { return true; }
};
/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
/// [expr.reinterpret.cast]), which provides a differently-typed view
/// of a value but performs no actual work at run time.
///
/// This expression node represents a reinterpret cast, e.g.,
/// @c reinterpret_cast<int>(VoidPtr).
class CXXReinterpretCastExpr : public CXXNamedCastExpr {
public:
CXXReinterpretCastExpr(QualType ty, Expr *op, QualType writtenTy,
SourceLocation l)
: CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, op, writtenTy, l) {}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXReinterpretCastExprClass;
}
static bool classof(const CXXReinterpretCastExpr *) { return true; }
};
/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
/// which can remove type qualifiers but does not change the underlying value.
///
/// This expression node represents a const cast, e.g.,
/// @c const_cast<char*>(PtrToConstChar).
class CXXConstCastExpr : public CXXNamedCastExpr {
public:
CXXConstCastExpr(QualType ty, Expr *op, QualType writtenTy,
SourceLocation l)
: CXXNamedCastExpr(CXXConstCastExprClass, ty, op, writtenTy, l) {}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXConstCastExprClass;
}
static bool classof(const CXXConstCastExpr *) { return true; }
};
/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
///
class CXXBoolLiteralExpr : public Expr {
bool Value;
SourceLocation Loc;
public:
CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
Expr(CXXBoolLiteralExprClass, Ty), Value(val), Loc(l) {}
bool getValue() const { return Value; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXBoolLiteralExprClass;
}
static bool classof(const CXXBoolLiteralExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
/// the type_info that corresponds to the supplied type, or the (possibly
/// dynamic) type of the supplied expression.
///
/// This represents code like @c typeid(int) or @c typeid(*objPtr)
class CXXTypeidExpr : public Expr {
private:
bool isTypeOp : 1;
union {
void *Ty;
Stmt *Ex;
} Operand;
SourceRange Range;
public:
CXXTypeidExpr(bool isTypeOp, void *op, QualType Ty, const SourceRange r) :
Expr(CXXTypeidExprClass, Ty), isTypeOp(isTypeOp), Range(r) {
if (isTypeOp)
Operand.Ty = op;
else
// op was an Expr*, so cast it back to that to be safe
Operand.Ex = static_cast<Stmt*>(op);
}
bool isTypeOperand() const { return isTypeOp; }
QualType getTypeOperand() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
return QualType::getFromOpaquePtr(Operand.Ty);
}
Expr* getExprOperand() const {
assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
return static_cast<Expr*>(Operand.Ex);
}
virtual SourceRange getSourceRange() const {
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTypeidExprClass;
}
static bool classof(const CXXTypeidExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXTypeidExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// CXXThisExpr - Represents the "this" expression in C++, which is a
/// pointer to the object on which the current member function is
/// executing (C++ [expr.prim]p3). Example:
///
/// @code
/// class Foo {
/// public:
/// void bar();
/// void test() { this->bar(); }
/// };
/// @endcode
class CXXThisExpr : public Expr {
SourceLocation Loc;
public:
CXXThisExpr(SourceLocation L, QualType Type)
: Expr(CXXThisExprClass, Type), Loc(L) { }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXThisExprClass;
}
static bool classof(const CXXThisExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXThisExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// CXXThrowExpr - [C++ 15] C++ Throw Expression. This handles
/// 'throw' and 'throw' assignment-expression. When
/// assignment-expression isn't present, Op will be null.
///
class CXXThrowExpr : public Expr {
Stmt *Op;
SourceLocation ThrowLoc;
public:
// Ty is the void type which is used as the result type of the
// exepression. The l is the location of the throw keyword. expr
// can by null, if the optional expression to throw isn't present.
CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
Expr(CXXThrowExprClass, Ty), Op(expr), ThrowLoc(l) {}
const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
virtual SourceRange getSourceRange() const {
if (getSubExpr() == 0)
return SourceRange(ThrowLoc, ThrowLoc);
return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXThrowExprClass;
}
static bool classof(const CXXThrowExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
/// function call argument that was created from the corresponding
/// parameter's default argument, when the call did not explicitly
/// supply arguments for all of the parameters.
class CXXDefaultArgExpr : public Expr {
ParmVarDecl *Param;
public:
// Param is the parameter whose default argument is used by this
// expression.
explicit CXXDefaultArgExpr(ParmVarDecl *param)
: Expr(CXXDefaultArgExprClass,
param->hasUnparsedDefaultArg()? param->getType().getNonReferenceType()
: param->getDefaultArg()->getType()),
Param(param) { }
// Retrieve the parameter that the argument was created from.
const ParmVarDecl *getParam() const { return Param; }
ParmVarDecl *getParam() { return Param; }
// Retrieve the actual argument to the function call.
const Expr *getExpr() const { return Param->getDefaultArg(); }
Expr *getExpr() { return Param->getDefaultArg(); }
virtual SourceRange getSourceRange() const {
// Default argument expressions have no representation in the
// source, so they have an empty source range.
return SourceRange();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDefaultArgExprClass;
}
static bool classof(const CXXDefaultArgExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
// Serialization
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXDefaultArgExpr* CreateImpl(llvm::Deserializer& D,
ASTContext& C);
};
/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
/// x = int(0.5);
class CXXFunctionalCastExpr : public ExplicitCastExpr {
SourceLocation TyBeginLoc;
SourceLocation RParenLoc;
public:
CXXFunctionalCastExpr(QualType ty, QualType writtenTy,
SourceLocation tyBeginLoc, Expr *castExpr,
SourceLocation rParenLoc) :
ExplicitCastExpr(CXXFunctionalCastExprClass, ty, castExpr, writtenTy),
TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
virtual SourceRange getSourceRange() const {
return SourceRange(TyBeginLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXFunctionalCastExprClass;
}
static bool classof(const CXXFunctionalCastExpr *) { return true; }
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXFunctionalCastExpr *
CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// @brief Represents a C++ functional cast expression that builds a
/// temporary object.
///
/// This expression type represents a C++ "functional" cast
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
/// constructor to build a temporary object. If N == 0 but no
/// constructor will be called (because the functional cast is
/// performing a value-initialized an object whose class type has no
/// user-declared constructors), CXXZeroInitValueExpr will represent
/// the functional cast. Finally, with N == 1 arguments the functional
/// cast expression will be represented by CXXFunctionalCastExpr.
/// Example:
/// @code
/// struct X { X(int, float); }
///
/// X create_X() {
/// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
/// };
/// @endcode
class CXXTemporaryObjectExpr : public Expr {
SourceLocation TyBeginLoc;
SourceLocation RParenLoc;
CXXConstructorDecl *Constructor;
Stmt **Args;
unsigned NumArgs;
public:
CXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType writtenTy,
SourceLocation tyBeginLoc, Expr **Args,
unsigned NumArgs, SourceLocation rParenLoc);
~CXXTemporaryObjectExpr();
SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator arg_begin() { return Args; }
arg_iterator arg_end() { return Args + NumArgs; }
const_arg_iterator arg_begin() const { return Args; }
const_arg_iterator arg_end() const { return Args + NumArgs; }
virtual SourceRange getSourceRange() const {
return SourceRange(TyBeginLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTemporaryObjectExprClass;
}
static bool classof(const CXXTemporaryObjectExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXTemporaryObjectExpr *CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// CXXZeroInitValueExpr - [C++ 5.2.3p2]
/// Expression "T()" which creates a value-initialized rvalue of type
/// T, which is either a non-class type or a class type without any
/// user-defined constructors.
///
class CXXZeroInitValueExpr : public Expr {
SourceLocation TyBeginLoc;
SourceLocation RParenLoc;
public:
CXXZeroInitValueExpr(QualType ty, SourceLocation tyBeginLoc,
SourceLocation rParenLoc ) :
Expr(CXXZeroInitValueExprClass, ty),
TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
/// @brief Whether this initialization expression was
/// implicitly-generated.
bool isImplicit() const {
return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
}
virtual SourceRange getSourceRange() const {
return SourceRange(TyBeginLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXZeroInitValueExprClass;
}
static bool classof(const CXXZeroInitValueExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXZeroInitValueExpr *
CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// CXXConditionDeclExpr - Condition declaration of a if/switch/while/for
/// statement, e.g: "if (int x = f()) {...}".
/// The main difference with DeclRefExpr is that CXXConditionDeclExpr owns the
/// decl that it references.
///
class CXXConditionDeclExpr : public DeclRefExpr {
public:
CXXConditionDeclExpr(SourceLocation startLoc,
SourceLocation eqLoc, VarDecl *var)
: DeclRefExpr(CXXConditionDeclExprClass, var,
var->getType().getNonReferenceType(), startLoc) {}
virtual void Destroy(ASTContext& Ctx);
SourceLocation getStartLoc() const { return getLocation(); }
VarDecl *getVarDecl() { return cast<VarDecl>(getDecl()); }
const VarDecl *getVarDecl() const { return cast<VarDecl>(getDecl()); }
virtual SourceRange getSourceRange() const {
return SourceRange(getStartLoc(), getVarDecl()->getInit()->getLocEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXConditionDeclExprClass;
}
static bool classof(const CXXConditionDeclExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
// FIXME: Implement these.
//virtual void EmitImpl(llvm::Serializer& S) const;
//static CXXConditionDeclExpr *
// CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// CXXNewExpr - A new expression for memory allocation and constructor calls,
/// e.g: "new CXXNewExpr(foo)".
class CXXNewExpr : public Expr {
// Was the usage ::new, i.e. is the global new to be used?
bool GlobalNew : 1;
// Was the form (type-id) used? Otherwise, it was new-type-id.
bool ParenTypeId : 1;
// Is there an initializer? If not, built-ins are uninitialized, else they're
// value-initialized.
bool Initializer : 1;
// Do we allocate an array? If so, the first SubExpr is the size expression.
bool Array : 1;
// The number of placement new arguments.
unsigned NumPlacementArgs : 14;
// The number of constructor arguments. This may be 1 even for non-class
// types; use the pseudo copy constructor.
unsigned NumConstructorArgs : 14;
// Contains an optional array size expression, any number of optional
// placement arguments, and any number of optional constructor arguments,
// in that order.
Stmt **SubExprs;
// Points to the allocation function used.
FunctionDecl *OperatorNew;
// Points to the deallocation function used in case of error. May be null.
FunctionDecl *OperatorDelete;
// Points to the constructor used. Cannot be null if AllocType is a record;
// it would still point at the default constructor (even an implicit one).
// Must be null for all other types.
CXXConstructorDecl *Constructor;
SourceLocation StartLoc;
SourceLocation EndLoc;
// Deserialization constructor
CXXNewExpr(QualType ty, bool globalNew, bool parenTypeId, bool initializer,
bool array, unsigned numPlaceArgs, unsigned numConsArgs,
Stmt **subExprs, FunctionDecl *operatorNew,
FunctionDecl *operatorDelete, CXXConstructorDecl *constructor,
SourceLocation startLoc, SourceLocation endLoc)
: Expr(CXXNewExprClass, ty), GlobalNew(globalNew), ParenTypeId(parenTypeId),
Initializer(initializer), Array(array), NumPlacementArgs(numPlaceArgs),
NumConstructorArgs(numConsArgs), SubExprs(subExprs),
OperatorNew(operatorNew), OperatorDelete(operatorDelete),
Constructor(constructor), StartLoc(startLoc), EndLoc(endLoc)
{ }
public:
CXXNewExpr(bool globalNew, FunctionDecl *operatorNew, Expr **placementArgs,
unsigned numPlaceArgs, bool ParenTypeId, Expr *arraySize,
CXXConstructorDecl *constructor, bool initializer,
Expr **constructorArgs, unsigned numConsArgs,
FunctionDecl *operatorDelete, QualType ty,
SourceLocation startLoc, SourceLocation endLoc);
~CXXNewExpr() {
delete[] SubExprs;
}
QualType getAllocatedType() const {
assert(getType()->isPointerType());
return getType()->getAsPointerType()->getPointeeType();
}
FunctionDecl *getOperatorNew() const { return OperatorNew; }
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
CXXConstructorDecl *getConstructor() const { return Constructor; }
bool isArray() const { return Array; }
Expr *getArraySize() {
return Array ? cast<Expr>(SubExprs[0]) : 0;
}
const Expr *getArraySize() const {
return Array ? cast<Expr>(SubExprs[0]) : 0;
}
unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
Expr *getPlacementArg(unsigned i) {
assert(i < NumPlacementArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + i]);
}
const Expr *getPlacementArg(unsigned i) const {
assert(i < NumPlacementArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + i]);
}
bool isGlobalNew() const { return GlobalNew; }
bool isParenTypeId() const { return ParenTypeId; }
bool hasInitializer() const { return Initializer; }
unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
Expr *getConstructorArg(unsigned i) {
assert(i < NumConstructorArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
}
const Expr *getConstructorArg(unsigned i) const {
assert(i < NumConstructorArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
}
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator placement_arg_begin() {
return SubExprs + Array;
}
arg_iterator placement_arg_end() {
return SubExprs + Array + getNumPlacementArgs();
}
const_arg_iterator placement_arg_begin() const {
return SubExprs + Array;
}
const_arg_iterator placement_arg_end() const {
return SubExprs + Array + getNumPlacementArgs();
}
arg_iterator constructor_arg_begin() {
return SubExprs + Array + getNumPlacementArgs();
}
arg_iterator constructor_arg_end() {
return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
const_arg_iterator constructor_arg_begin() const {
return SubExprs + Array + getNumPlacementArgs();
}
const_arg_iterator constructor_arg_end() const {
return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
virtual SourceRange getSourceRange() const {
return SourceRange(StartLoc, EndLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNewExprClass;
}
static bool classof(const CXXNewExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXNewExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
/// calls, e.g. "delete[] pArray".
class CXXDeleteExpr : public Expr {
// Is this a forced global delete, i.e. "::delete"?
bool GlobalDelete : 1;
// Is this the array form of delete, i.e. "delete[]"?
bool ArrayForm : 1;
// Points to the operator delete overload that is used. Could be a member.
FunctionDecl *OperatorDelete;
// The pointer expression to be deleted.
Stmt *Argument;
// Location of the expression.
SourceLocation Loc;
public:
CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
: Expr(CXXDeleteExprClass, ty), GlobalDelete(globalDelete),
ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
Loc(loc) { }
bool isGlobalDelete() const { return GlobalDelete; }
bool isArrayForm() const { return ArrayForm; }
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
Expr *getArgument() { return cast<Expr>(Argument); }
const Expr *getArgument() const { return cast<Expr>(Argument); }
virtual SourceRange getSourceRange() const {
return SourceRange(Loc, Argument->getLocEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDeleteExprClass;
}
static bool classof(const CXXDeleteExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
virtual void EmitImpl(llvm::Serializer& S) const;
static CXXDeleteExpr * CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// \brief Represents the name of a function that has not been
/// resolved to any declaration.
///
/// Unresolved function names occur when a function name is
/// encountered prior to an open parentheses ('(') in a C++ function
/// call, and the function name itself did not resolve to a
/// declaration. These function names can only be resolved when they
/// form the postfix-expression of a function call, so that
/// argument-dependent lookup finds declarations corresponding to
/// these functions.
/// @code
/// template<typename T> void f(T x) {
/// g(x); // g is an unresolved function name (that is also a dependent name)
/// }
/// @endcode
class UnresolvedFunctionNameExpr : public Expr {
/// The name that was present in the source
DeclarationName Name;
/// The location of this name in the source code
SourceLocation Loc;
public:
UnresolvedFunctionNameExpr(DeclarationName N, QualType T, SourceLocation L)
: Expr(UnresolvedFunctionNameExprClass, T, false, false), Name(N), Loc(L) { }
/// \brief Retrieves the name that occurred in the source code.
DeclarationName getName() const { return Name; }
/// getLocation - Retrieves the location in the source code where
/// the name occurred.
SourceLocation getLocation() const { return Loc; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedFunctionNameExprClass;
}
static bool classof(const UnresolvedFunctionNameExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
virtual void EmitImpl(llvm::Serializer& S) const;
static UnresolvedFunctionNameExpr *CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
/// implementation of TR1/C++0x type trait templates.
/// Example:
/// __is_pod(int) == true
/// __is_enum(std::string) == false
class UnaryTypeTraitExpr : public Expr {
/// UTT - The trait.
UnaryTypeTrait UTT;
/// Loc - The location of the type trait keyword.
SourceLocation Loc;
/// RParen - The location of the closing paren.
SourceLocation RParen;
/// QueriedType - The type we're testing.
QualType QueriedType;
public:
UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
SourceLocation rparen, QualType ty)
: Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
UnaryTypeTrait getTrait() const { return UTT; }
QualType getQueriedType() const { return QueriedType; }
bool Evaluate() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryTypeTraitExprClass;
}
static bool classof(const UnaryTypeTraitExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
virtual void EmitImpl(llvm::Serializer& S) const;
static UnaryTypeTraitExpr *CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
/// QualifiedDeclRefExpr - A reference to a declared variable,
/// function, enum, etc., that includes a qualification, e.g.,
/// "N::foo".
class QualifiedDeclRefExpr : public DeclRefExpr {
/// NestedNameLoc - The location of the beginning of the
/// nested-name-specifier that qualifies this declaration.
SourceLocation NestedNameLoc;
public:
QualifiedDeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD,
bool VD, SourceLocation nnl)
: DeclRefExpr(QualifiedDeclRefExprClass, d, t, l, TD, VD),
NestedNameLoc(nnl) { }
virtual SourceRange getSourceRange() const {
return SourceRange(NestedNameLoc, getLocation());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == QualifiedDeclRefExprClass;
}
static bool classof(const QualifiedDeclRefExpr *) { return true; }
virtual void EmitImpl(llvm::Serializer& S) const;
static QualifiedDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
};
} // end namespace clang
#endif