clang-1/lib/Sema/Sema.cpp

310 строки
12 KiB
C++
Исходник Обычный вид История

//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the actions class which performs semantic analysis and
// builds an AST out of a parse stream.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Lex/Preprocessor.h"
using namespace clang;
/// ConvertQualTypeToStringFn - This function is used to pretty print the
/// specified QualType as a string in diagnostics.
static void ConvertArgToStringFn(Diagnostic::ArgumentKind Kind, intptr_t Val,
const char *Modifier, unsigned ModLen,
const char *Argument, unsigned ArgLen,
llvm::SmallVectorImpl<char> &Output,
void *Cookie) {
ASTContext &Context = *static_cast<ASTContext*>(Cookie);
std::string S;
if (Kind == Diagnostic::ak_qualtype) {
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for QualType argument");
QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
// FIXME: Playing with std::string is really slow.
S = Ty.getAsString();
// If this is a sugared type (like a typedef, typeof, etc), then unwrap one
// level of the sugar so that the type is more obvious to the user.
QualType DesugaredTy = Ty->getDesugaredType(true);
DesugaredTy.setCVRQualifiers(DesugaredTy.getCVRQualifiers() |
Ty.getCVRQualifiers());
if (Ty != DesugaredTy &&
// If the desugared type is a vector type, we don't want to expand it,
// it will turn into an attribute mess. People want their "vec4".
!isa<VectorType>(DesugaredTy) &&
// Don't desugar magic Objective-C types.
Ty.getUnqualifiedType() != Context.getObjCIdType() &&
Ty.getUnqualifiedType() != Context.getObjCSelType() &&
Ty.getUnqualifiedType() != Context.getObjCProtoType() &&
Ty.getUnqualifiedType() != Context.getObjCClassType() &&
// Not va_list.
Ty.getUnqualifiedType() != Context.getBuiltinVaListType()) {
S = "'"+S+"' (aka '";
S += DesugaredTy.getAsString();
S += "')";
Output.append(S.begin(), S.end());
return;
}
} else if (Kind == Diagnostic::ak_declarationname) {
DeclarationName N = DeclarationName::getFromOpaqueInteger(Val);
S = N.getAsString();
if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0)
S = '+' + S;
else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12) && ArgLen==0)
S = '-' + S;
else
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for DeclarationName argument");
} else {
assert(Kind == Diagnostic::ak_nameddecl);
if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0)
S = reinterpret_cast<NamedDecl*>(Val)->getQualifiedNameAsString();
else {
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for NamedDecl* argument");
S = reinterpret_cast<NamedDecl*>(Val)->getNameAsString();
}
}
Output.push_back('\'');
Output.append(S.begin(), S.end());
Output.push_back('\'');
}
This reworks some of the Diagnostic interfaces a bit to change how diagnostics are formed. In particular, a diagnostic with all its strings and ranges is now packaged up and sent to DiagnosticClients as a DiagnosticInfo instead of as a ton of random stuff. This has the benefit of simplifying the interface, making it more extensible, and allowing us to do more checking for things like access past the end of the various arrays passed in. In addition to introducing DiagnosticInfo, this also substantially changes how Diagnostic::Report works. Instead of being passed in all of the info required to issue a diagnostic, Report now takes only the required info (a location and ID) and returns a fresh DiagnosticInfo *by value*. The caller is then free to stuff strings and ranges into the DiagnosticInfo with the << operator. When the dtor runs on the DiagnosticInfo object (which should happen at the end of the statement), the diagnostic is actually emitted with all of the accumulated information. This is a somewhat tricky dance, but it means that the accumulated DiagnosticInfo is allowed to keep pointers to other expression temporaries without those pointers getting invalidated. This is just the minimal change to get this stuff working, but this will allow us to eliminate the zillions of variant "Diag" methods scattered throughout (e.g.) sema. For example, instead of calling: Diag(BuiltinLoc, diag::err_overload_no_match, typeNames, SourceRange(BuiltinLoc, RParenLoc)); We will soon be able to just do: Diag(BuiltinLoc, diag::err_overload_no_match) << typeNames << SourceRange(BuiltinLoc, RParenLoc)); This scales better to support arbitrary types being passed in (not just strings) in a type-safe way. Go operator overloading?! git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59502 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-18 10:04:44 +03:00
static inline RecordDecl *CreateStructDecl(ASTContext &C, const char *Name) {
if (C.getLangOptions().CPlusPlus)
return CXXRecordDecl::Create(C, TagDecl::TK_struct,
C.getTranslationUnitDecl(),
SourceLocation(), &C.Idents.get(Name));
return RecordDecl::Create(C, TagDecl::TK_struct,
C.getTranslationUnitDecl(),
SourceLocation(), &C.Idents.get(Name));
}
void Sema::ActOnTranslationUnitScope(SourceLocation Loc, Scope *S) {
TUScope = S;
PushDeclContext(S, Context.getTranslationUnitDecl());
if (!PP.getLangOptions().ObjC1) return;
// Synthesize "typedef struct objc_selector *SEL;"
RecordDecl *SelTag = CreateStructDecl(Context, "objc_selector");
PushOnScopeChains(SelTag, TUScope);
QualType SelT = Context.getPointerType(Context.getTagDeclType(SelTag));
TypedefDecl *SelTypedef = TypedefDecl::Create(Context, CurContext,
SourceLocation(),
&Context.Idents.get("SEL"),
SelT);
PushOnScopeChains(SelTypedef, TUScope);
Context.setObjCSelType(SelTypedef);
// FIXME: Make sure these don't leak!
RecordDecl *ClassTag = CreateStructDecl(Context, "objc_class");
QualType ClassT = Context.getPointerType(Context.getTagDeclType(ClassTag));
TypedefDecl *ClassTypedef =
TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("Class"), ClassT);
PushOnScopeChains(ClassTag, TUScope);
PushOnScopeChains(ClassTypedef, TUScope);
Context.setObjCClassType(ClassTypedef);
// Synthesize "@class Protocol;
ObjCInterfaceDecl *ProtocolDecl =
ObjCInterfaceDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("Protocol"),
SourceLocation(), true);
Context.setObjCProtoType(Context.getObjCInterfaceType(ProtocolDecl));
PushOnScopeChains(ProtocolDecl, TUScope);
// Synthesize "typedef struct objc_object { Class isa; } *id;"
RecordDecl *ObjectTag = CreateStructDecl(Context, "objc_object");
QualType ObjT = Context.getPointerType(Context.getTagDeclType(ObjectTag));
PushOnScopeChains(ObjectTag, TUScope);
TypedefDecl *IdTypedef = TypedefDecl::Create(Context, CurContext,
SourceLocation(),
&Context.Idents.get("id"),
ObjT);
PushOnScopeChains(IdTypedef, TUScope);
Context.setObjCIdType(IdTypedef);
}
Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
bool CompleteTranslationUnit)
: LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer),
Diags(PP.getDiagnostics()),
SourceMgr(PP.getSourceManager()), CurContext(0), PreDeclaratorDC(0),
CurBlock(0), PackContext(0), IdResolver(pp.getLangOptions()),
GlobalNewDeleteDeclared(false),
CompleteTranslationUnit(CompleteTranslationUnit) {
StdNamespace = 0;
TUScope = 0;
if (getLangOptions().CPlusPlus)
FieldCollector.reset(new CXXFieldCollector());
// Tell diagnostics how to render things from the AST library.
PP.getDiagnostics().SetArgToStringFn(ConvertArgToStringFn, &Context);
}
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
/// If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
void Sema::ImpCastExprToType(Expr *&Expr, QualType Ty, bool isLvalue) {
QualType ExprTy = Context.getCanonicalType(Expr->getType());
QualType TypeTy = Context.getCanonicalType(Ty);
if (ExprTy == TypeTy)
return;
if (Expr->getType().getTypePtr()->isPointerType() &&
Ty.getTypePtr()->isPointerType()) {
QualType ExprBaseType =
cast<PointerType>(ExprTy.getUnqualifiedType())->getPointeeType();
QualType BaseType =
cast<PointerType>(TypeTy.getUnqualifiedType())->getPointeeType();
if (ExprBaseType.getAddressSpace() != BaseType.getAddressSpace()) {
Diag(Expr->getExprLoc(), diag::err_implicit_pointer_address_space_cast)
<< Expr->getSourceRange();
}
}
if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(Expr)) {
ImpCast->setType(Ty);
ImpCast->setLvalueCast(isLvalue);
} else
Overhaul of Stmt allocation: - Made allocation of Stmt objects using vanilla new/delete a *compiler error* by making this new/delete "protected" within class Stmt. - Now the only way to allocate Stmt objects is by using the new operator that takes ASTContext& as an argument. This ensures that all Stmt nodes are allocated from the same (pool) allocator. - Naturally, these two changes required that *all* creation sites for AST nodes use new (ASTContext&). This is a large patch, but the majority of the changes are just this mechanical adjustment. - The above changes also mean that AST nodes can no longer be deallocated using 'delete'. Instead, one most do StmtObject->Destroy(ASTContext&) or do ASTContextObject.Deallocate(StmtObject) (the latter not running the 'Destroy' method). Along the way I also... - Made CompoundStmt allocate its array of Stmt* using the allocator in ASTContext (previously it used std::vector). There are a whole bunch of other Stmt classes that need to be similarly changed to ensure that all memory allocated for ASTs comes from the allocator in ASTContext. - Added a new smart pointer ExprOwningPtr to Sema.h. This replaces the uses of llvm::OwningPtr within Sema, as llvm::OwningPtr used 'delete' to free memory instead of a Stmt's 'Destroy' method. Big thanks to Doug Gregor for helping with the acrobatics of making 'new/delete' private and the new smart pointer ExprOwningPtr! git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63997 91177308-0d34-0410-b5e6-96231b3b80d8
2009-02-07 04:47:29 +03:00
Expr = new (Context) ImplicitCastExpr(Ty, Expr, isLvalue);
}
void Sema::DeleteExpr(ExprTy *E) {
if (E) static_cast<Expr*>(E)->Destroy(Context);
}
void Sema::DeleteStmt(StmtTy *S) {
if (S) static_cast<Stmt*>(S)->Destroy(Context);
}
/// ActOnEndOfTranslationUnit - This is called at the very end of the
/// translation unit when EOF is reached and all but the top-level scope is
/// popped.
void Sema::ActOnEndOfTranslationUnit() {
if (!CompleteTranslationUnit)
return;
// C99 6.9.2p2:
// A declaration of an identifier for an object that has file
// scope without an initializer, and without a storage-class
// specifier or with the storage-class specifier static,
// constitutes a tentative definition. If a translation unit
// contains one or more tentative definitions for an identifier,
// and the translation unit contains no external definition for
// that identifier, then the behavior is exactly as if the
// translation unit contains a file scope declaration of that
// identifier, with the composite type as of the end of the
// translation unit, with an initializer equal to 0.
for (llvm::DenseMap<DeclarationName, VarDecl *>::iterator
D = TentativeDefinitions.begin(),
DEnd = TentativeDefinitions.end();
D != DEnd; ++D) {
VarDecl *VD = D->second;
if (VD->isInvalidDecl() || !VD->isTentativeDefinition(Context))
continue;
if (const IncompleteArrayType *ArrayT
= Context.getAsIncompleteArrayType(VD->getType())) {
if (RequireCompleteType(VD->getLocation(),
ArrayT->getElementType(),
diag::err_tentative_def_incomplete_type_arr))
VD->setInvalidDecl();
else {
// Set the length of the array to 1 (C99 6.9.2p5).
Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
llvm::APInt One(Context.getTypeSize(Context.getSizeType()),
true);
QualType T
= Context.getConstantArrayType(ArrayT->getElementType(),
One, ArrayType::Normal, 0);
VD->setType(T);
}
} else if (RequireCompleteType(VD->getLocation(), VD->getType(),
diag::err_tentative_def_incomplete_type))
VD->setInvalidDecl();
// Notify the consumer that we've completed a tentative definition.
if (!VD->isInvalidDecl())
Consumer.CompleteTentativeDefinition(VD);
}
}
//===----------------------------------------------------------------------===//
// Helper functions.
//===----------------------------------------------------------------------===//
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed. If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *Sema::getCurFunctionDecl() {
DeclContext *DC = CurContext;
while (isa<BlockDecl>(DC))
DC = DC->getParent();
return dyn_cast<FunctionDecl>(DC);
}
ObjCMethodDecl *Sema::getCurMethodDecl() {
DeclContext *DC = CurContext;
while (isa<BlockDecl>(DC))
DC = DC->getParent();
return dyn_cast<ObjCMethodDecl>(DC);
}
NamedDecl *Sema::getCurFunctionOrMethodDecl() {
DeclContext *DC = CurContext;
while (isa<BlockDecl>(DC))
DC = DC->getParent();
if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
return cast<NamedDecl>(DC);
return 0;
}
Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() {
this->Emit();
// If this is not a note, and we're in a template instantiation
// that is different from the last template instantiation where
// we emitted an error, print a template instantiation
// backtrace.
if (!SemaRef.Diags.isBuiltinNote(DiagID) &&
!SemaRef.ActiveTemplateInstantiations.empty() &&
SemaRef.ActiveTemplateInstantiations.back()
!= SemaRef.LastTemplateInstantiationErrorContext) {
SemaRef.PrintInstantiationStack();
SemaRef.LastTemplateInstantiationErrorContext
= SemaRef.ActiveTemplateInstantiations.back();
}
}