clang-1/lib/Sema/TreeTransform.h

6784 строки
262 KiB
C
Исходник Обычный вид История

//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements a semantic tree transformation that takes a given
// AST and rebuilds it, possibly transforming some nodes in the process.
//
//===----------------------------------------------------------------------===/
#ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H
#define LLVM_CLANG_SEMA_TREETRANSFORM_H
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/TypeLocBuilder.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/Designator.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
namespace clang {
using namespace sema;
/// \brief A semantic tree transformation that allows one to transform one
/// abstract syntax tree into another.
///
/// A new tree transformation is defined by creating a new subclass \c X of
/// \c TreeTransform<X> and then overriding certain operations to provide
/// behavior specific to that transformation. For example, template
/// instantiation is implemented as a tree transformation where the
/// transformation of TemplateTypeParmType nodes involves substituting the
/// template arguments for their corresponding template parameters; a similar
/// transformation is performed for non-type template parameters and
/// template template parameters.
///
/// This tree-transformation template uses static polymorphism to allow
/// subclasses to customize any of its operations. Thus, a subclass can
/// override any of the transformation or rebuild operators by providing an
/// operation with the same signature as the default implementation. The
/// overridding function should not be virtual.
///
/// Semantic tree transformations are split into two stages, either of which
/// can be replaced by a subclass. The "transform" step transforms an AST node
/// or the parts of an AST node using the various transformation functions,
/// then passes the pieces on to the "rebuild" step, which constructs a new AST
/// node of the appropriate kind from the pieces. The default transformation
/// routines recursively transform the operands to composite AST nodes (e.g.,
/// the pointee type of a PointerType node) and, if any of those operand nodes
/// were changed by the transformation, invokes the rebuild operation to create
/// a new AST node.
///
/// Subclasses can customize the transformation at various levels. The
/// most coarse-grained transformations involve replacing TransformType(),
/// TransformExpr(), TransformDecl(), TransformNestedNameSpecifier(),
/// TransformTemplateName(), or TransformTemplateArgument() with entirely
/// new implementations.
///
/// For more fine-grained transformations, subclasses can replace any of the
/// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
/// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
/// replacing TransformTemplateTypeParmType() allows template instantiation
/// to substitute template arguments for their corresponding template
/// parameters. Additionally, subclasses can override the \c RebuildXXX
/// functions to control how AST nodes are rebuilt when their operands change.
/// By default, \c TreeTransform will invoke semantic analysis to rebuild
/// AST nodes. However, certain other tree transformations (e.g, cloning) may
/// be able to use more efficient rebuild steps.
///
/// There are a handful of other functions that can be overridden, allowing one
/// to avoid traversing nodes that don't need any transformation
/// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
/// operands have not changed (\c AlwaysRebuild()), and customize the
/// default locations and entity names used for type-checking
/// (\c getBaseLocation(), \c getBaseEntity()).
template<typename Derived>
class TreeTransform {
protected:
Sema &SemaRef;
public:
/// \brief Initializes a new tree transformer.
TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
/// \brief Retrieves a reference to the derived class.
Derived &getDerived() { return static_cast<Derived&>(*this); }
/// \brief Retrieves a reference to the derived class.
const Derived &getDerived() const {
return static_cast<const Derived&>(*this);
}
static inline ExprResult Owned(Expr *E) { return E; }
static inline StmtResult Owned(Stmt *S) { return S; }
/// \brief Retrieves a reference to the semantic analysis object used for
/// this tree transform.
Sema &getSema() const { return SemaRef; }
/// \brief Whether the transformation should always rebuild AST nodes, even
/// if none of the children have changed.
///
/// Subclasses may override this function to specify when the transformation
/// should rebuild all AST nodes.
bool AlwaysRebuild() { return false; }
/// \brief Returns the location of the entity being transformed, if that
/// information was not available elsewhere in the AST.
///
/// By default, returns no source-location information. Subclasses can
/// provide an alternative implementation that provides better location
/// information.
SourceLocation getBaseLocation() { return SourceLocation(); }
/// \brief Returns the name of the entity being transformed, if that
/// information was not available elsewhere in the AST.
///
/// By default, returns an empty name. Subclasses can provide an alternative
/// implementation with a more precise name.
DeclarationName getBaseEntity() { return DeclarationName(); }
/// \brief Sets the "base" location and entity when that
/// information is known based on another transformation.
///
/// By default, the source location and entity are ignored. Subclasses can
/// override this function to provide a customized implementation.
void setBase(SourceLocation Loc, DeclarationName Entity) { }
/// \brief RAII object that temporarily sets the base location and entity
/// used for reporting diagnostics in types.
class TemporaryBase {
TreeTransform &Self;
SourceLocation OldLocation;
DeclarationName OldEntity;
public:
TemporaryBase(TreeTransform &Self, SourceLocation Location,
DeclarationName Entity) : Self(Self) {
OldLocation = Self.getDerived().getBaseLocation();
OldEntity = Self.getDerived().getBaseEntity();
Self.getDerived().setBase(Location, Entity);
}
~TemporaryBase() {
Self.getDerived().setBase(OldLocation, OldEntity);
}
};
/// \brief Determine whether the given type \p T has already been
/// transformed.
///
/// Subclasses can provide an alternative implementation of this routine
/// to short-circuit evaluation when it is known that a given type will
/// not change. For example, template instantiation need not traverse
/// non-dependent types.
bool AlreadyTransformed(QualType T) {
return T.isNull();
}
/// \brief Determine whether the given call argument should be dropped, e.g.,
/// because it is a default argument.
///
/// Subclasses can provide an alternative implementation of this routine to
/// determine which kinds of call arguments get dropped. By default,
/// CXXDefaultArgument nodes are dropped (prior to transformation).
bool DropCallArgument(Expr *E) {
return E->isDefaultArgument();
}
/// \brief Transforms the given type into another type.
///
/// By default, this routine transforms a type by creating a
/// TypeSourceInfo for it and delegating to the appropriate
/// function. This is expensive, but we don't mind, because
/// this method is deprecated anyway; all users should be
/// switched to storing TypeSourceInfos.
///
/// \returns the transformed type.
QualType TransformType(QualType T, QualType ObjectType = QualType());
/// \brief Transforms the given type-with-location into a new
/// type-with-location.
///
/// By default, this routine transforms a type by delegating to the
/// appropriate TransformXXXType to build a new type. Subclasses
/// may override this function (to take over all type
/// transformations) or some set of the TransformXXXType functions
/// to alter the transformation.
TypeSourceInfo *TransformType(TypeSourceInfo *DI,
QualType ObjectType = QualType());
/// \brief Transform the given type-with-location into a new
/// type, collecting location information in the given builder
/// as necessary.
///
QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL,
QualType ObjectType = QualType());
/// \brief Transform the given statement.
///
/// By default, this routine transforms a statement by delegating to the
/// appropriate TransformXXXStmt function to transform a specific kind of
/// statement or the TransformExpr() function to transform an expression.
/// Subclasses may override this function to transform statements using some
/// other mechanism.
///
/// \returns the transformed statement.
StmtResult TransformStmt(Stmt *S);
/// \brief Transform the given expression.
///
/// By default, this routine transforms an expression by delegating to the
/// appropriate TransformXXXExpr function to build a new expression.
/// Subclasses may override this function to transform expressions using some
/// other mechanism.
///
/// \returns the transformed expression.
ExprResult TransformExpr(Expr *E);
/// \brief Transform the given declaration, which is referenced from a type
/// or expression.
///
/// By default, acts as the identity function on declarations. Subclasses
/// may override this function to provide alternate behavior.
Decl *TransformDecl(SourceLocation Loc, Decl *D) { return D; }
/// \brief Transform the definition of the given declaration.
///
/// By default, invokes TransformDecl() to transform the declaration.
/// Subclasses may override this function to provide alternate behavior.
Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
return getDerived().TransformDecl(Loc, D);
}
/// \brief Transform the given declaration, which was the first part of a
/// nested-name-specifier in a member access expression.
///
/// This specific declaration transformation only applies to the first
/// identifier in a nested-name-specifier of a member access expression, e.g.,
/// the \c T in \c x->T::member
///
/// By default, invokes TransformDecl() to transform the declaration.
/// Subclasses may override this function to provide alternate behavior.
NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
}
/// \brief Transform the given nested-name-specifier.
///
/// By default, transforms all of the types and declarations within the
/// nested-name-specifier. Subclasses may override this function to provide
/// alternate behavior.
NestedNameSpecifier *TransformNestedNameSpecifier(NestedNameSpecifier *NNS,
SourceRange Range,
QualType ObjectType = QualType(),
NamedDecl *FirstQualifierInScope = 0);
/// \brief Transform the given declaration name.
///
/// By default, transforms the types of conversion function, constructor,
/// and destructor names and then (if needed) rebuilds the declaration name.
/// Identifiers and selectors are returned unmodified. Sublcasses may
/// override this function to provide alternate behavior.
DeclarationNameInfo
TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
QualType ObjectType = QualType());
/// \brief Transform the given template name.
///
/// By default, transforms the template name by transforming the declarations
/// and nested-name-specifiers that occur within the template name.
/// Subclasses may override this function to provide alternate behavior.
TemplateName TransformTemplateName(TemplateName Name,
QualType ObjectType = QualType());
/// \brief Transform the given template argument.
///
/// By default, this operation transforms the type, expression, or
/// declaration stored within the template argument and constructs a
/// new template argument from the transformed result. Subclasses may
/// override this function to provide alternate behavior.
///
/// Returns true if there was an error.
bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
TemplateArgumentLoc &Output);
/// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
void InventTemplateArgumentLoc(const TemplateArgument &Arg,
TemplateArgumentLoc &ArgLoc);
/// \brief Fakes up a TypeSourceInfo for a type.
TypeSourceInfo *InventTypeSourceInfo(QualType T) {
return SemaRef.Context.getTrivialTypeSourceInfo(T,
getDerived().getBaseLocation());
}
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T, \
QualType ObjectType = QualType());
#include "clang/AST/TypeLocNodes.def"
/// \brief Transforms the parameters of a function type into the
/// given vectors.
///
/// The result vectors should be kept in sync; null entries in the
/// variables vector are acceptable.
///
/// Return true on error.
bool TransformFunctionTypeParams(FunctionProtoTypeLoc TL,
llvm::SmallVectorImpl<QualType> &PTypes,
llvm::SmallVectorImpl<ParmVarDecl*> &PVars);
/// \brief Transforms a single function-type parameter. Return null
/// on error.
ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm);
QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL,
QualType ObjectType);
QualType
TransformTemplateSpecializationType(const TemplateSpecializationType *T,
QualType ObjectType);
StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
#define STMT(Node, Parent) \
StmtResult Transform##Node(Node *S);
#define EXPR(Node, Parent) \
ExprResult Transform##Node(Node *E);
#define ABSTRACT_STMT(Stmt)
#include "clang/AST/StmtNodes.inc"
/// \brief Build a new pointer type given its pointee type.
///
/// By default, performs semantic analysis when building the pointer type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
/// \brief Build a new block pointer type given its pointee type.
///
/// By default, performs semantic analysis when building the block pointer
/// type. Subclasses may override this routine to provide different behavior.
QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
/// \brief Build a new reference type given the type it references.
///
/// By default, performs semantic analysis when building the
/// reference type. Subclasses may override this routine to provide
/// different behavior.
///
/// \param LValue whether the type was written with an lvalue sigil
/// or an rvalue sigil.
QualType RebuildReferenceType(QualType ReferentType,
bool LValue,
SourceLocation Sigil);
/// \brief Build a new member pointer type given the pointee type and the
/// class type it refers into.
///
/// By default, performs semantic analysis when building the member pointer
/// type. Subclasses may override this routine to provide different behavior.
QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
SourceLocation Sigil);
/// \brief Build a new array type given the element type, size
/// modifier, size of the array (if known), size expression, and index type
/// qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
/// Also by default, all of the other Rebuild*Array
QualType RebuildArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
const llvm::APInt *Size,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new constant array type given the element type, size
/// modifier, (known) size of the array, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildConstantArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
const llvm::APInt &Size,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new incomplete array type given the element type, size
/// modifier, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildIncompleteArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new variable-length array type given the element type,
/// size modifier, size expression, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildVariableArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new dependent-sized array type given the element type,
/// size modifier, size expression, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDependentSizedArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// \brief Build a new vector type given the element type and
/// number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
VectorType::AltiVecSpecific AltiVecSpec);
/// \brief Build a new extended vector type given the element type and
/// number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
SourceLocation AttributeLoc);
/// \brief Build a new potentially dependently-sized extended vector type
/// given the element type and number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDependentSizedExtVectorType(QualType ElementType,
Expr *SizeExpr,
SourceLocation AttributeLoc);
/// \brief Build a new function type.
///
/// By default, performs semantic analysis when building the function type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildFunctionProtoType(QualType T,
QualType *ParamTypes,
unsigned NumParamTypes,
bool Variadic, unsigned Quals,
const FunctionType::ExtInfo &Info);
/// \brief Build a new unprototyped function type.
QualType RebuildFunctionNoProtoType(QualType ResultType);
/// \brief Rebuild an unresolved typename type, given the decl that
/// the UnresolvedUsingTypenameDecl was transformed to.
QualType RebuildUnresolvedUsingType(Decl *D);
/// \brief Build a new typedef type.
QualType RebuildTypedefType(TypedefDecl *Typedef) {
return SemaRef.Context.getTypeDeclType(Typedef);
}
/// \brief Build a new class/struct/union type.
QualType RebuildRecordType(RecordDecl *Record) {
return SemaRef.Context.getTypeDeclType(Record);
}
/// \brief Build a new Enum type.
QualType RebuildEnumType(EnumDecl *Enum) {
return SemaRef.Context.getTypeDeclType(Enum);
}
/// \brief Build a new typeof(expr) type.
///
/// By default, performs semantic analysis when building the typeof type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
/// \brief Build a new typeof(type) type.
///
/// By default, builds a new TypeOfType with the given underlying type.
QualType RebuildTypeOfType(QualType Underlying);
/// \brief Build a new C++0x decltype type.
///
/// By default, performs semantic analysis when building the decltype type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
/// \brief Build a new template specialization type.
///
/// By default, performs semantic analysis when building the template
/// specialization type. Subclasses may override this routine to provide
/// different behavior.
QualType RebuildTemplateSpecializationType(TemplateName Template,
SourceLocation TemplateLoc,
const TemplateArgumentListInfo &Args);
/// \brief Build a new qualified name type.
///
/// By default, builds a new ElaboratedType type from the keyword,
/// the nested-name-specifier and the named type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildElaboratedType(SourceLocation KeywordLoc,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, QualType Named) {
return SemaRef.Context.getElaboratedType(Keyword, NNS, Named);
}
/// \brief Build a new typename type that refers to a template-id.
///
/// By default, builds a new DependentNameType type from the
/// nested-name-specifier and the given type. Subclasses may override
/// this routine to provide different behavior.
QualType RebuildDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
const IdentifierInfo *Name,
SourceLocation NameLoc,
const TemplateArgumentListInfo &Args) {
// Rebuild the template name.
// TODO: avoid TemplateName abstraction
TemplateName InstName =
getDerived().RebuildTemplateName(Qualifier, QualifierRange, *Name,
QualType());
if (InstName.isNull())
return QualType();
// If it's still dependent, make a dependent specialization.
if (InstName.getAsDependentTemplateName())
return SemaRef.Context.getDependentTemplateSpecializationType(
Keyword, Qualifier, Name, Args);
// Otherwise, make an elaborated type wrapping a non-dependent
// specialization.
QualType T =
getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
if (T.isNull()) return QualType();
// NOTE: NNS is already recorded in template specialization type T.
return SemaRef.Context.getElaboratedType(Keyword, /*NNS=*/0, T);
}
/// \brief Build a new typename type that refers to an identifier.
///
/// By default, performs semantic analysis when building the typename type
/// (or elaborated type). Subclasses may override this routine to provide
/// different behavior.
QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Id,
SourceLocation KeywordLoc,
SourceRange NNSRange,
SourceLocation IdLoc) {
CXXScopeSpec SS;
SS.setScopeRep(NNS);
SS.setRange(NNSRange);
if (NNS->isDependent()) {
// If the name is still dependent, just build a new dependent name type.
if (!SemaRef.computeDeclContext(SS))
return SemaRef.Context.getDependentNameType(Keyword, NNS, Id);
}
if (Keyword == ETK_None || Keyword == ETK_Typename)
return SemaRef.CheckTypenameType(Keyword, NNS, *Id,
KeywordLoc, NNSRange, IdLoc);
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
// We had a dependent elaborated-type-specifier that has been transformed
// into a non-dependent elaborated-type-specifier. Find the tag we're
// referring to.
LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
DeclContext *DC = SemaRef.computeDeclContext(SS, false);
if (!DC)
return QualType();
if (SemaRef.RequireCompleteDeclContext(SS, DC))
return QualType();
TagDecl *Tag = 0;
SemaRef.LookupQualifiedName(Result, DC);
switch (Result.getResultKind()) {
case LookupResult::NotFound:
case LookupResult::NotFoundInCurrentInstantiation:
break;
case LookupResult::Found:
Tag = Result.getAsSingle<TagDecl>();
break;
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue:
llvm_unreachable("Tag lookup cannot find non-tags");
return QualType();
case LookupResult::Ambiguous:
// Let the LookupResult structure handle ambiguities.
return QualType();
}
if (!Tag) {
// FIXME: Would be nice to highlight just the source range.
SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
<< Kind << Id << DC;
return QualType();
}
if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, IdLoc, *Id)) {
SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
return QualType();
}
// Build the elaborated-type-specifier type.
QualType T = SemaRef.Context.getTypeDeclType(Tag);
return SemaRef.Context.getElaboratedType(Keyword, NNS, T);
}
/// \brief Build a new nested-name-specifier given the prefix and an
/// identifier that names the next step in the nested-name-specifier.
///
/// By default, performs semantic analysis when building the new
/// nested-name-specifier. Subclasses may override this routine to provide
/// different behavior.
NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
SourceRange Range,
IdentifierInfo &II,
QualType ObjectType,
NamedDecl *FirstQualifierInScope);
/// \brief Build a new nested-name-specifier given the prefix and the
/// namespace named in the next step in the nested-name-specifier.
///
/// By default, performs semantic analysis when building the new
/// nested-name-specifier. Subclasses may override this routine to provide
/// different behavior.
NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
SourceRange Range,
NamespaceDecl *NS);
/// \brief Build a new nested-name-specifier given the prefix and the
/// type named in the next step in the nested-name-specifier.
///
/// By default, performs semantic analysis when building the new
/// nested-name-specifier. Subclasses may override this routine to provide
/// different behavior.
NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
SourceRange Range,
bool TemplateKW,
QualType T);
/// \brief Build a new template name given a nested name specifier, a flag
/// indicating whether the "template" keyword was provided, and the template
/// that the template name refers to.
///
/// By default, builds the new template name directly. Subclasses may override
/// this routine to provide different behavior.
TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier,
bool TemplateKW,
TemplateDecl *Template);
/// \brief Build a new template name given a nested name specifier and the
/// name that is referred to as a template.
///
/// By default, performs semantic analysis to determine whether the name can
/// be resolved to a specific template, then builds the appropriate kind of
/// template name. Subclasses may override this routine to provide different
/// behavior.
TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
const IdentifierInfo &II,
QualType ObjectType);
/// \brief Build a new template name given a nested name specifier and the
/// overloaded operator name that is referred to as a template.
///
/// By default, performs semantic analysis to determine whether the name can
/// be resolved to a specific template, then builds the appropriate kind of
/// template name. Subclasses may override this routine to provide different
/// behavior.
TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier,
OverloadedOperatorKind Operator,
QualType ObjectType);
/// \brief Build a new compound statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
MultiStmtArg Statements,
SourceLocation RBraceLoc,
bool IsStmtExpr) {
return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
IsStmtExpr);
}
/// \brief Build a new case statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
Expr *LHS,
SourceLocation EllipsisLoc,
Expr *RHS,
SourceLocation ColonLoc) {
return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
ColonLoc);
}
/// \brief Attach the body to a new case statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
getSema().ActOnCaseStmtBody(S, Body);
return S;
}
/// \brief Build a new default statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
Stmt *SubStmt) {
return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
/*CurScope=*/0);
}
/// \brief Build a new label statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildLabelStmt(SourceLocation IdentLoc,
IdentifierInfo *Id,
SourceLocation ColonLoc,
Stmt *SubStmt, bool HasUnusedAttr) {
return SemaRef.ActOnLabelStmt(IdentLoc, Id, ColonLoc, SubStmt,
HasUnusedAttr);
}
/// \brief Build a new "if" statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
VarDecl *CondVar, Stmt *Then,
SourceLocation ElseLoc, Stmt *Else) {
return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else);
}
/// \brief Start building a new switch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
Expr *Cond, VarDecl *CondVar) {
return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond,
CondVar);
}
/// \brief Attach the body to the switch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
Stmt *Switch, Stmt *Body) {
return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
}
/// \brief Build a new while statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildWhileStmt(SourceLocation WhileLoc,
Sema::FullExprArg Cond,
VarDecl *CondVar,
Stmt *Body) {
return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body);
}
/// \brief Build a new do-while statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
SourceLocation WhileLoc,
SourceLocation LParenLoc,
Expr *Cond,
SourceLocation RParenLoc) {
return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
Cond, RParenLoc);
}
/// \brief Build a new for statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
Stmt *Init, Sema::FullExprArg Cond,
VarDecl *CondVar, Sema::FullExprArg Inc,
SourceLocation RParenLoc, Stmt *Body) {
return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
CondVar,
Inc, RParenLoc, Body);
}
/// \brief Build a new goto statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
LabelStmt *Label) {
return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label->getID());
}
/// \brief Build a new indirect goto statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
Expr *Target) {
return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
}
/// \brief Build a new return statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildReturnStmt(SourceLocation ReturnLoc,
Expr *Result) {
return getSema().ActOnReturnStmt(ReturnLoc, Result);
}
/// \brief Build a new declaration statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDeclStmt(Decl **Decls, unsigned NumDecls,
SourceLocation StartLoc,
SourceLocation EndLoc) {
return getSema().Owned(
new (getSema().Context) DeclStmt(
DeclGroupRef::Create(getSema().Context,
Decls, NumDecls),
StartLoc, EndLoc));
}
/// \brief Build a new inline asm statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildAsmStmt(SourceLocation AsmLoc,
bool IsSimple,
bool IsVolatile,
unsigned NumOutputs,
unsigned NumInputs,
IdentifierInfo **Names,
MultiExprArg Constraints,
MultiExprArg Exprs,
Expr *AsmString,
MultiExprArg Clobbers,
SourceLocation RParenLoc,
bool MSAsm) {
return getSema().ActOnAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
NumInputs, Names, move(Constraints),
Exprs, AsmString, Clobbers,
RParenLoc, MSAsm);
}
/// \brief Build a new Objective-C @try statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
Stmt *TryBody,
MultiStmtArg CatchStmts,
Stmt *Finally) {
return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, move(CatchStmts),
Finally);
}
/// \brief Rebuild an Objective-C exception declaration.
///
/// By default, performs semantic analysis to build the new declaration.
/// Subclasses may override this routine to provide different behavior.
VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
TypeSourceInfo *TInfo, QualType T) {
return getSema().BuildObjCExceptionDecl(TInfo, T,
ExceptionDecl->getIdentifier(),
ExceptionDecl->getLocation());
}
/// \brief Build a new Objective-C @catch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
SourceLocation RParenLoc,
VarDecl *Var,
Stmt *Body) {
return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
Var, Body);
}
/// \brief Build a new Objective-C @finally statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
Stmt *Body) {
return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
}
/// \brief Build a new Objective-C @throw statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
Expr *Operand) {
return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
}
/// \brief Build a new Objective-C @synchronized statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
Expr *Object,
Stmt *Body) {
return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object,
Body);
}
/// \brief Build a new Objective-C fast enumeration statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
Stmt *Element,
Expr *Collection,
SourceLocation RParenLoc,
Stmt *Body) {
return getSema().ActOnObjCForCollectionStmt(ForLoc, LParenLoc,
Element,
Collection,
RParenLoc,
Body);
}
/// \brief Build a new C++ exception declaration.
///
/// By default, performs semantic analysis to build the new decaration.
/// Subclasses may override this routine to provide different behavior.
VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
TypeSourceInfo *Declarator,
IdentifierInfo *Name,
SourceLocation Loc) {
return getSema().BuildExceptionDeclaration(0, Declarator, Name, Loc);
}
/// \brief Build a new C++ catch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
VarDecl *ExceptionDecl,
Stmt *Handler) {
return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
Handler));
}
/// \brief Build a new C++ try statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCXXTryStmt(SourceLocation TryLoc,
Stmt *TryBlock,
MultiStmtArg Handlers) {
return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, move(Handlers));
}
/// \brief Build a new expression that references a declaration.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool RequiresADL) {
return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
}
/// \brief Build a new expression that references a declaration.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDeclRefExpr(NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
ValueDecl *VD,
const DeclarationNameInfo &NameInfo,
TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.setScopeRep(Qualifier);
SS.setRange(QualifierRange);
// FIXME: loses template args.
return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD);
}
/// \brief Build a new expression in parentheses.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
SourceLocation RParen) {
return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
}
/// \brief Build a new pseudo-destructor expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
SourceLocation OperatorLoc,
bool isArrow,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage Destroyed);
/// \brief Build a new unary operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
UnaryOperatorKind Opc,
Expr *SubExpr) {
return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, SubExpr);
}
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
/// \brief Build a new builtin offsetof expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
TypeSourceInfo *Type,
Sema::OffsetOfComponent *Components,
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
unsigned NumComponents,
SourceLocation RParenLoc) {
return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
NumComponents, RParenLoc);
}
/// \brief Build a new sizeof or alignof expression with a type argument.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildSizeOfAlignOf(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
bool isSizeOf, SourceRange R) {
return getSema().CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeOf, R);
}
/// \brief Build a new sizeof or alignof expression with an expression
/// argument.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildSizeOfAlignOf(Expr *SubExpr, SourceLocation OpLoc,
bool isSizeOf, SourceRange R) {
ExprResult Result
= getSema().CreateSizeOfAlignOfExpr(SubExpr, OpLoc, isSizeOf, R);
if (Result.isInvalid())
return ExprError();
return move(Result);
}
/// \brief Build a new array subscript expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildArraySubscriptExpr(Expr *LHS,
SourceLocation LBracketLoc,
Expr *RHS,
SourceLocation RBracketLoc) {
return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, LHS,
LBracketLoc, RHS,
RBracketLoc);
}
/// \brief Build a new call expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc) {
return getSema().ActOnCallExpr(/*Scope=*/0, Callee, LParenLoc,
move(Args), RParenLoc);
}
/// \brief Build a new member access expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
bool isArrow,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
const DeclarationNameInfo &MemberNameInfo,
ValueDecl *Member,
NamedDecl *FoundDecl,
const TemplateArgumentListInfo *ExplicitTemplateArgs,
NamedDecl *FirstQualifierInScope) {
if (!Member->getDeclName()) {
// We have a reference to an unnamed field.
assert(!Qualifier && "Can't have an unnamed field with a qualifier!");
if (getSema().PerformObjectMemberConversion(Base, Qualifier,
FoundDecl, Member))
return ExprError();
MemberExpr *ME =
new (getSema().Context) MemberExpr(Base, isArrow,
Member, MemberNameInfo,
cast<FieldDecl>(Member)->getType());
return getSema().Owned(ME);
}
CXXScopeSpec SS;
if (Qualifier) {
SS.setRange(QualifierRange);
SS.setScopeRep(Qualifier);
}
getSema().DefaultFunctionArrayConversion(Base);
QualType BaseType = Base->getType();
// FIXME: this involves duplicating earlier analysis in a lot of
// cases; we should avoid this when possible.
LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
R.addDecl(FoundDecl);
R.resolveKind();
return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
SS, FirstQualifierInScope,
R, ExplicitTemplateArgs);
}
/// \brief Build a new binary operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *LHS, Expr *RHS) {
return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc, LHS, RHS);
}
/// \brief Build a new conditional operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildConditionalOperator(Expr *Cond,
SourceLocation QuestionLoc,
Expr *LHS,
SourceLocation ColonLoc,
Expr *RHS) {
return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
LHS, RHS);
}
/// \brief Build a new C-style cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *SubExpr) {
return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
SubExpr);
}
/// \brief Build a new compound literal expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *Init) {
return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
Init);
}
/// \brief Build a new extended vector element access expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildExtVectorElementExpr(Expr *Base,
SourceLocation OpLoc,
SourceLocation AccessorLoc,
IdentifierInfo &Accessor) {
CXXScopeSpec SS;
DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
OpLoc, /*IsArrow*/ false,
SS, /*FirstQualifierInScope*/ 0,
NameInfo,
/* TemplateArgs */ 0);
}
/// \brief Build a new initializer list expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildInitList(SourceLocation LBraceLoc,
MultiExprArg Inits,
SourceLocation RBraceLoc,
QualType ResultTy) {
ExprResult Result
= SemaRef.ActOnInitList(LBraceLoc, move(Inits), RBraceLoc);
if (Result.isInvalid() || ResultTy->isDependentType())
return move(Result);
// Patch in the result type we were given, which may have been computed
// when the initial InitListExpr was built.
InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
ILE->setType(ResultTy);
return move(Result);
}
/// \brief Build a new designated initializer expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDesignatedInitExpr(Designation &Desig,
MultiExprArg ArrayExprs,
SourceLocation EqualOrColonLoc,
bool GNUSyntax,
Expr *Init) {
ExprResult Result
= SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
Init);
if (Result.isInvalid())
return ExprError();
ArrayExprs.release();
return move(Result);
}
/// \brief Build a new value-initialized expression.
///
/// By default, builds the implicit value initialization without performing
/// any semantic analysis. Subclasses may override this routine to provide
/// different behavior.
ExprResult RebuildImplicitValueInitExpr(QualType T) {
return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T));
}
/// \brief Build a new \c va_arg expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
Expr *SubExpr, TypeSourceInfo *TInfo,
SourceLocation RParenLoc) {
return getSema().BuildVAArgExpr(BuiltinLoc,
SubExpr, TInfo,
RParenLoc);
}
/// \brief Build a new expression list in parentheses.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
MultiExprArg SubExprs,
SourceLocation RParenLoc) {
return getSema().ActOnParenOrParenListExpr(LParenLoc, RParenLoc,
move(SubExprs));
}
/// \brief Build a new address-of-label expression.
///
/// By default, performs semantic analysis, using the name of the label
/// rather than attempting to map the label statement itself.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
SourceLocation LabelLoc,
LabelStmt *Label) {
return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label->getID());
}
/// \brief Build a new GNU statement expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildStmtExpr(SourceLocation LParenLoc,
Stmt *SubStmt,
SourceLocation RParenLoc) {
return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc);
}
/// \brief Build a new __builtin_types_compatible_p expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeSourceInfo *TInfo1,
TypeSourceInfo *TInfo2,
SourceLocation RParenLoc) {
return getSema().BuildTypesCompatibleExpr(BuiltinLoc,
TInfo1, TInfo2,
RParenLoc);
}
/// \brief Build a new __builtin_choose_expr expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
Expr *Cond, Expr *LHS, Expr *RHS,
SourceLocation RParenLoc) {
return SemaRef.ActOnChooseExpr(BuiltinLoc,
Cond, LHS, RHS,
RParenLoc);
}
/// \brief Build a new overloaded operator call expression.
///
/// By default, performs semantic analysis to build the new expression.
/// The semantic analysis provides the behavior of template instantiation,
/// copying with transformations that turn what looks like an overloaded
/// operator call into a use of a builtin operator, performing
/// argument-dependent lookup, etc. Subclasses may override this routine to
/// provide different behavior.
ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
SourceLocation OpLoc,
Expr *Callee,
Expr *First,
Expr *Second);
/// \brief Build a new C++ "named" cast expression, such as static_cast or
/// reinterpret_cast.
///
/// By default, this routine dispatches to one of the more-specific routines
/// for a particular named case, e.g., RebuildCXXStaticCastExpr().
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
Stmt::StmtClass Class,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
switch (Class) {
case Stmt::CXXStaticCastExprClass:
return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
case Stmt::CXXDynamicCastExprClass:
return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
case Stmt::CXXReinterpretCastExprClass:
return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr,
RParenLoc);
case Stmt::CXXConstCastExprClass:
return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
default:
assert(false && "Invalid C++ named cast");
break;
}
return ExprError();
}
/// \brief Build a new C++ static_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// \brief Build a new C++ dynamic_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// \brief Build a new C++ reinterpret_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// \brief Build a new C++ const_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// \brief Build a new C++ functional-style cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
SourceLocation LParenLoc,
Expr *Sub,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
MultiExprArg(&Sub, 1),
RParenLoc);
}
/// \brief Build a new C++ typeid(type) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// \brief Build a new C++ typeid(expr) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// \brief Build a new C++ __uuidof(type) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// \brief Build a new C++ __uuidof(expr) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// \brief Build a new C++ "this" expression.
///
/// By default, builds a new "this" expression without performing any
/// semantic analysis. Subclasses may override this routine to provide
/// different behavior.
ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
QualType ThisType,
bool isImplicit) {
return getSema().Owned(
new (getSema().Context) CXXThisExpr(ThisLoc, ThisType,
isImplicit));
}
/// \brief Build a new C++ throw expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub) {
return getSema().ActOnCXXThrow(ThrowLoc, Sub);
}
/// \brief Build a new C++ default-argument expression.
///
/// By default, builds a new default-argument expression, which does not
/// require any semantic analysis. Subclasses may override this routine to
/// provide different behavior.
ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
ParmVarDecl *Param) {
return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Loc,
Param));
}
/// \brief Build a new C++ zero-initialization expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc,
MultiExprArg(getSema(), 0, 0),
RParenLoc);
}
/// \brief Build a new C++ "new" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens,
QualType AllocatedType,
TypeSourceInfo *AllocatedTypeInfo,
Expr *ArraySize,
SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen) {
return getSema().BuildCXXNew(StartLoc, UseGlobal,
PlacementLParen,
move(PlacementArgs),
PlacementRParen,
TypeIdParens,
AllocatedType,
AllocatedTypeInfo,
ArraySize,
ConstructorLParen,
move(ConstructorArgs),
ConstructorRParen);
}
/// \brief Build a new C++ "delete" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
bool IsGlobalDelete,
bool IsArrayForm,
Expr *Operand) {
return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
Operand);
}
/// \brief Build a new unary type trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait,
SourceLocation StartLoc,
TypeSourceInfo *T,
SourceLocation RParenLoc) {
return getSema().BuildUnaryTypeTrait(Trait, StartLoc, T, RParenLoc);
}
/// \brief Build a new (previously unresolved) declaration reference
/// expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDependentScopeDeclRefExpr(NestedNameSpecifier *NNS,
SourceRange QualifierRange,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.setRange(QualifierRange);
SS.setScopeRep(NNS);
if (TemplateArgs)
return getSema().BuildQualifiedTemplateIdExpr(SS, NameInfo,
*TemplateArgs);
return getSema().BuildQualifiedDeclarationNameExpr(SS, NameInfo);
}
/// \brief Build a new template-id expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool RequiresADL,
const TemplateArgumentListInfo &TemplateArgs) {
return getSema().BuildTemplateIdExpr(SS, R, RequiresADL, TemplateArgs);
}
/// \brief Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXConstructExpr(QualType T,
SourceLocation Loc,
CXXConstructorDecl *Constructor,
bool IsElidable,
MultiExprArg Args,
bool RequiresZeroInit,
CXXConstructExpr::ConstructionKind ConstructKind,
SourceRange ParenRange) {
ASTOwningVector<Expr*> ConvertedArgs(SemaRef);
if (getSema().CompleteConstructorCall(Constructor, move(Args), Loc,
ConvertedArgs))
return ExprError();
return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
move_arg(ConvertedArgs),
RequiresZeroInit, ConstructKind,
ParenRange);
}
/// \brief Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TSInfo,
LParenLoc,
move(Args),
RParenLoc);
}
/// \brief Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TSInfo,
LParenLoc,
move(Args),
RParenLoc);
}
/// \brief Build a new member reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.setRange(QualifierRange);
SS.setScopeRep(Qualifier);
return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
OperatorLoc, IsArrow,
SS, FirstQualifierInScope,
MemberNameInfo,
TemplateArgs);
}
/// \brief Build a new member reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE,
QualType BaseType,
SourceLocation OperatorLoc,
bool IsArrow,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
NamedDecl *FirstQualifierInScope,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.setRange(QualifierRange);
SS.setScopeRep(Qualifier);
return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
OperatorLoc, IsArrow,
SS, FirstQualifierInScope,
R, TemplateArgs);
}
/// \brief Build a new noexcept expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
}
/// \brief Build a new Objective-C @encode expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
TypeSourceInfo *EncodeTypeInfo,
SourceLocation RParenLoc) {
return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo,
RParenLoc));
}
/// \brief Build a new Objective-C class message.
ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
MultiExprArg Args,
SourceLocation RBracLoc) {
return SemaRef.BuildClassMessage(ReceiverTypeInfo,
ReceiverTypeInfo->getType(),
/*SuperLoc=*/SourceLocation(),
Sel, Method, LBracLoc, RBracLoc,
move(Args));
}
/// \brief Build a new Objective-C instance message.
ExprResult RebuildObjCMessageExpr(Expr *Receiver,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
MultiExprArg Args,
SourceLocation RBracLoc) {
return SemaRef.BuildInstanceMessage(Receiver,
Receiver->getType(),
/*SuperLoc=*/SourceLocation(),
Sel, Method, LBracLoc, RBracLoc,
move(Args));
}
/// \brief Build a new Objective-C ivar reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
SourceLocation IvarLoc,
bool IsArrow, bool IsFreeIvar) {
// FIXME: We lose track of the IsFreeIvar bit.
CXXScopeSpec SS;
Expr *Base = BaseArg;
LookupResult R(getSema(), Ivar->getDeclName(), IvarLoc,
Sema::LookupMemberName);
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
/*FIME:*/IvarLoc,
SS, 0,
false);
if (Result.isInvalid())
return ExprError();
if (Result.get())
return move(Result);
return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
/*FIXME:*/IvarLoc, IsArrow, SS,
/*FirstQualifierInScope=*/0,
R,
/*TemplateArgs=*/0);
}
/// \brief Build a new Objective-C property reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
ObjCPropertyDecl *Property,
SourceLocation PropertyLoc) {
CXXScopeSpec SS;
Expr *Base = BaseArg;
LookupResult R(getSema(), Property->getDeclName(), PropertyLoc,
Sema::LookupMemberName);
bool IsArrow = false;
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
/*FIME:*/PropertyLoc,
SS, 0, false);
if (Result.isInvalid())
return ExprError();
if (Result.get())
return move(Result);
return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
/*FIXME:*/PropertyLoc, IsArrow,
SS,
/*FirstQualifierInScope=*/0,
R,
/*TemplateArgs=*/0);
}
/// \brief Build a new Objective-C implicit setter/getter reference
/// expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCImplicitSetterGetterRefExpr(
ObjCMethodDecl *Getter,
QualType T,
ObjCMethodDecl *Setter,
SourceLocation NameLoc,
Expr *Base,
SourceLocation SuperLoc,
QualType SuperTy,
bool Super) {
// Since these expressions can only be value-dependent, we do not need to
// perform semantic analysis again.
if (Super)
return Owned(
new (getSema().Context) ObjCImplicitSetterGetterRefExpr(Getter, T,
Setter,
NameLoc,
SuperLoc,
SuperTy));
else
return Owned(
new (getSema().Context) ObjCImplicitSetterGetterRefExpr(
Getter, T,
Setter,
NameLoc,
Base));
}
/// \brief Build a new Objective-C "isa" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
bool IsArrow) {
CXXScopeSpec SS;
Expr *Base = BaseArg;
LookupResult R(getSema(), &getSema().Context.Idents.get("isa"), IsaLoc,
Sema::LookupMemberName);
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
/*FIME:*/IsaLoc,
SS, 0, false);
if (Result.isInvalid())
return ExprError();
if (Result.get())
return move(Result);
return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
/*FIXME:*/IsaLoc, IsArrow, SS,
/*FirstQualifierInScope=*/0,
R,
/*TemplateArgs=*/0);
}
/// \brief Build a new shuffle vector expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
MultiExprArg SubExprs,
SourceLocation RParenLoc) {
// Find the declaration for __builtin_shufflevector
const IdentifierInfo &Name
= SemaRef.Context.Idents.get("__builtin_shufflevector");
TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
assert(Lookup.first != Lookup.second && "No __builtin_shufflevector?");
// Build a reference to the __builtin_shufflevector builtin
FunctionDecl *Builtin = cast<FunctionDecl>(*Lookup.first);
Expr *Callee
= new (SemaRef.Context) DeclRefExpr(Builtin, Builtin->getType(),
BuiltinLoc);
SemaRef.UsualUnaryConversions(Callee);
// Build the CallExpr
unsigned NumSubExprs = SubExprs.size();
Expr **Subs = (Expr **)SubExprs.release();
CallExpr *TheCall = new (SemaRef.Context) CallExpr(SemaRef.Context, Callee,
Subs, NumSubExprs,
Builtin->getCallResultType(),
RParenLoc);
ExprResult OwnedCall(SemaRef.Owned(TheCall));
// Type-check the __builtin_shufflevector expression.
ExprResult Result = SemaRef.SemaBuiltinShuffleVector(TheCall);
if (Result.isInvalid())
return ExprError();
OwnedCall.release();
return move(Result);
}
};
template<typename Derived>
StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
if (!S)
return SemaRef.Owned(S);
switch (S->getStmtClass()) {
case Stmt::NoStmtClass: break;
// Transform individual statement nodes
#define STMT(Node, Parent) \
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
#define EXPR(Node, Parent)
#include "clang/AST/StmtNodes.inc"
// Transform expressions by calling TransformExpr.
#define STMT(Node, Parent)
#define ABSTRACT_STMT(Stmt)
#define EXPR(Node, Parent) case Stmt::Node##Class:
#include "clang/AST/StmtNodes.inc"
{
ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
if (E.isInvalid())
return StmtError();
return getSema().ActOnExprStmt(getSema().MakeFullExpr(E.take()));
}
}
return SemaRef.Owned(S);
}
template<typename Derived>
ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
if (!E)
return SemaRef.Owned(E);
switch (E->getStmtClass()) {
case Stmt::NoStmtClass: break;
#define STMT(Node, Parent) case Stmt::Node##Class: break;
#define ABSTRACT_STMT(Stmt)
#define EXPR(Node, Parent) \
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
#include "clang/AST/StmtNodes.inc"
}
return SemaRef.Owned(E);
}
template<typename Derived>
NestedNameSpecifier *
TreeTransform<Derived>::TransformNestedNameSpecifier(NestedNameSpecifier *NNS,
SourceRange Range,
QualType ObjectType,
NamedDecl *FirstQualifierInScope) {
if (!NNS)
return 0;
// Transform the prefix of this nested name specifier.
NestedNameSpecifier *Prefix = NNS->getPrefix();
if (Prefix) {
Prefix = getDerived().TransformNestedNameSpecifier(Prefix, Range,
ObjectType,
FirstQualifierInScope);
if (!Prefix)
return 0;
// Clear out the object type and the first qualifier in scope; they only
// apply to the first element in the nested-name-specifier.
ObjectType = QualType();
FirstQualifierInScope = 0;
}
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
assert((Prefix || !ObjectType.isNull()) &&
"Identifier nested-name-specifier with no prefix or object type");
if (!getDerived().AlwaysRebuild() && Prefix == NNS->getPrefix() &&
ObjectType.isNull())
return NNS;
return getDerived().RebuildNestedNameSpecifier(Prefix, Range,
*NNS->getAsIdentifier(),
ObjectType,
FirstQualifierInScope);
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS
= cast_or_null<NamespaceDecl>(
getDerived().TransformDecl(Range.getBegin(),
NNS->getAsNamespace()));
if (!getDerived().AlwaysRebuild() &&
Prefix == NNS->getPrefix() &&
NS == NNS->getAsNamespace())
return NNS;
return getDerived().RebuildNestedNameSpecifier(Prefix, Range, NS);
}
case NestedNameSpecifier::Global:
// There is no meaningful transformation that one could perform on the
// global scope.
return NNS;
case NestedNameSpecifier::TypeSpecWithTemplate:
case NestedNameSpecifier::TypeSpec: {
TemporaryBase Rebase(*this, Range.getBegin(), DeclarationName());
QualType T = getDerived().TransformType(QualType(NNS->getAsType(), 0),
ObjectType);
if (T.isNull())
return 0;
if (!getDerived().AlwaysRebuild() &&
Prefix == NNS->getPrefix() &&
T == QualType(NNS->getAsType(), 0))
return NNS;
return getDerived().RebuildNestedNameSpecifier(Prefix, Range,
NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
T);
}
}
// Required to silence a GCC warning
return 0;
}
template<typename Derived>
DeclarationNameInfo
TreeTransform<Derived>
::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
QualType ObjectType) {
DeclarationName Name = NameInfo.getName();
if (!Name)
return DeclarationNameInfo();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
return NameInfo;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName: {
TypeSourceInfo *NewTInfo;
CanQualType NewCanTy;
if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
NewTInfo = getDerived().TransformType(OldTInfo, ObjectType);
if (!NewTInfo)
return DeclarationNameInfo();
NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
}
else {
NewTInfo = 0;
TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
QualType NewT = getDerived().TransformType(Name.getCXXNameType(),
ObjectType);
if (NewT.isNull())
return DeclarationNameInfo();
NewCanTy = SemaRef.Context.getCanonicalType(NewT);
}
DeclarationName NewName
= SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
NewCanTy);
DeclarationNameInfo NewNameInfo(NameInfo);
NewNameInfo.setName(NewName);
NewNameInfo.setNamedTypeInfo(NewTInfo);
return NewNameInfo;
}
}
assert(0 && "Unknown name kind.");
return DeclarationNameInfo();
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::TransformTemplateName(TemplateName Name,
QualType ObjectType) {
SourceLocation Loc = getDerived().getBaseLocation();
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
NestedNameSpecifier *NNS
= getDerived().TransformNestedNameSpecifier(QTN->getQualifier(),
/*FIXME:*/SourceRange(getDerived().getBaseLocation()),
ObjectType);
if (!NNS)
return TemplateName();
if (TemplateDecl *Template = QTN->getTemplateDecl()) {
TemplateDecl *TransTemplate
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(Loc, Template));
if (!TransTemplate)
return TemplateName();
if (!getDerived().AlwaysRebuild() &&
NNS == QTN->getQualifier() &&
TransTemplate == Template)
return Name;
return getDerived().RebuildTemplateName(NNS, QTN->hasTemplateKeyword(),
TransTemplate);
}
// These should be getting filtered out before they make it into the AST.
assert(false && "overloaded template name survived to here");
}
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
NestedNameSpecifier *NNS
= getDerived().TransformNestedNameSpecifier(DTN->getQualifier(),
/*FIXME:*/SourceRange(getDerived().getBaseLocation()),
ObjectType);
if (!NNS && DTN->getQualifier())
return TemplateName();
if (!getDerived().AlwaysRebuild() &&
NNS == DTN->getQualifier() &&
ObjectType.isNull())
return Name;
if (DTN->isIdentifier()) {
// FIXME: Bad range
SourceRange QualifierRange(getDerived().getBaseLocation());
return getDerived().RebuildTemplateName(NNS, QualifierRange,
*DTN->getIdentifier(),
ObjectType);
}
return getDerived().RebuildTemplateName(NNS, DTN->getOperator(),
ObjectType);
}
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
TemplateDecl *TransTemplate
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(Loc, Template));
if (!TransTemplate)
return TemplateName();
if (!getDerived().AlwaysRebuild() &&
TransTemplate == Template)
return Name;
return TemplateName(TransTemplate);
}
// These should be getting filtered out before they reach the AST.
assert(false && "overloaded function decl survived to here");
return TemplateName();
}
template<typename Derived>
void TreeTransform<Derived>::InventTemplateArgumentLoc(
const TemplateArgument &Arg,
TemplateArgumentLoc &Output) {
SourceLocation Loc = getDerived().getBaseLocation();
switch (Arg.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("null template argument in TreeTransform");
break;
case TemplateArgument::Type:
Output = TemplateArgumentLoc(Arg,
SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
break;
case TemplateArgument::Template:
Output = TemplateArgumentLoc(Arg, SourceRange(), Loc);
break;
case TemplateArgument::Expression:
Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
break;
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::Pack:
Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
break;
}
}
template<typename Derived>
bool TreeTransform<Derived>::TransformTemplateArgument(
const TemplateArgumentLoc &Input,
TemplateArgumentLoc &Output) {
const TemplateArgument &Arg = Input.getArgument();
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
Output = Input;
return false;
case TemplateArgument::Type: {
TypeSourceInfo *DI = Input.getTypeSourceInfo();
if (DI == NULL)
DI = InventTypeSourceInfo(Input.getArgument().getAsType());
DI = getDerived().TransformType(DI);
if (!DI) return true;
Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
return false;
}
case TemplateArgument::Declaration: {
// FIXME: we should never have to transform one of these.
DeclarationName Name;
if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl()))
Name = ND->getDeclName();
TemporaryBase Rebase(*this, Input.getLocation(), Name);
Decl *D = getDerived().TransformDecl(Input.getLocation(), Arg.getAsDecl());
if (!D) return true;
Expr *SourceExpr = Input.getSourceDeclExpression();
if (SourceExpr) {
EnterExpressionEvaluationContext Unevaluated(getSema(),
Sema::Unevaluated);
ExprResult E = getDerived().TransformExpr(SourceExpr);
SourceExpr = (E.isInvalid() ? 0 : E.take());
}
Output = TemplateArgumentLoc(TemplateArgument(D), SourceExpr);
return false;
}
case TemplateArgument::Template: {
TemporaryBase Rebase(*this, Input.getLocation(), DeclarationName());
TemplateName Template
= getDerived().TransformTemplateName(Arg.getAsTemplate());
if (Template.isNull())
return true;
Output = TemplateArgumentLoc(TemplateArgument(Template),
Input.getTemplateQualifierRange(),
Input.getTemplateNameLoc());
return false;
}
case TemplateArgument::Expression: {
// Template argument expressions are not potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(getSema(),
Sema::Unevaluated);
Expr *InputExpr = Input.getSourceExpression();
if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
ExprResult E
= getDerived().TransformExpr(InputExpr);
if (E.isInvalid()) return true;
Output = TemplateArgumentLoc(TemplateArgument(E.take()), E.take());
return false;
}
case TemplateArgument::Pack: {
llvm::SmallVector<TemplateArgument, 4> TransformedArgs;
TransformedArgs.reserve(Arg.pack_size());
for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
AEnd = Arg.pack_end();
A != AEnd; ++A) {
// FIXME: preserve source information here when we start
// caring about parameter packs.
TemplateArgumentLoc InputArg;
TemplateArgumentLoc OutputArg;
getDerived().InventTemplateArgumentLoc(*A, InputArg);
if (getDerived().TransformTemplateArgument(InputArg, OutputArg))
return true;
TransformedArgs.push_back(OutputArg.getArgument());
}
TemplateArgument Result;
Result.setArgumentPack(TransformedArgs.data(), TransformedArgs.size(),
true);
Output = TemplateArgumentLoc(Result, Input.getLocInfo());
return false;
}
}
// Work around bogus GCC warning
return true;
}
//===----------------------------------------------------------------------===//
// Type transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
QualType TreeTransform<Derived>::TransformType(QualType T,
QualType ObjectType) {
if (getDerived().AlreadyTransformed(T))
return T;
// Temporary workaround. All of these transformations should
// eventually turn into transformations on TypeLocs.
TypeSourceInfo *DI = getSema().Context.CreateTypeSourceInfo(T);
DI->getTypeLoc().initialize(getDerived().getBaseLocation());
TypeSourceInfo *NewDI = getDerived().TransformType(DI, ObjectType);
if (!NewDI)
return QualType();
return NewDI->getType();
}
template<typename Derived>
TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI,
QualType ObjectType) {
if (getDerived().AlreadyTransformed(DI->getType()))
return DI;
TypeLocBuilder TLB;
TypeLoc TL = DI->getTypeLoc();
TLB.reserve(TL.getFullDataSize());
QualType Result = getDerived().TransformType(TLB, TL, ObjectType);
if (Result.isNull())
return 0;
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T,
QualType ObjectType) {
switch (T.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
case TypeLoc::CLASS: \
return getDerived().Transform##CLASS##Type(TLB, cast<CLASS##TypeLoc>(T), \
ObjectType);
#include "clang/AST/TypeLocNodes.def"
}
llvm_unreachable("unhandled type loc!");
return QualType();
}
/// FIXME: By default, this routine adds type qualifiers only to types
/// that can have qualifiers, and silently suppresses those qualifiers
/// that are not permitted (e.g., qualifiers on reference or function
/// types). This is the right thing for template instantiation, but
/// probably not for other clients.
template<typename Derived>
QualType
TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
QualifiedTypeLoc T,
QualType ObjectType) {
Qualifiers Quals = T.getType().getLocalQualifiers();
QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc(),
ObjectType);
if (Result.isNull())
return QualType();
// Silently suppress qualifiers if the result type can't be qualified.
// FIXME: this is the right thing for template instantiation, but
// probably not for other clients.
if (Result->isFunctionType() || Result->isReferenceType())
return Result;
if (!Quals.empty()) {
Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals);
TLB.push<QualifiedTypeLoc>(Result);
// No location information to preserve.
}
return Result;
}
template <class TyLoc> static inline
QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
TyLoc NewT = TLB.push<TyLoc>(T.getType());
NewT.setNameLoc(T.getNameLoc());
return T.getType();
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
BuiltinTypeLoc T,
QualType ObjectType) {
BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
NewT.setBuiltinLoc(T.getBuiltinLoc());
if (T.needsExtraLocalData())
NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
return T.getType();
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
ComplexTypeLoc T,
QualType ObjectType) {
// FIXME: recurse?
return TransformTypeSpecType(TLB, T);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
PointerTypeLoc TL,
QualType ObjectType) {
QualType PointeeType
= getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (PointeeType->getAs<ObjCObjectType>()) {
// A dependent pointer type 'T *' has is being transformed such
// that an Objective-C class type is being replaced for 'T'. The
// resulting pointer type is an ObjCObjectPointerType, not a
// PointerType.
Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
NewT.setStarLoc(TL.getStarLoc());
return Result;
}
if (getDerived().AlwaysRebuild() ||
PointeeType != TL.getPointeeLoc().getType()) {
Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
NewT.setSigilLoc(TL.getSigilLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
BlockPointerTypeLoc TL,
QualType ObjectType) {
QualType PointeeType
= getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != TL.getPointeeLoc().getType()) {
Result = getDerived().RebuildBlockPointerType(PointeeType,
TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
NewT.setSigilLoc(TL.getSigilLoc());
return Result;
}
/// Transforms a reference type. Note that somewhat paradoxically we
/// don't care whether the type itself is an l-value type or an r-value
/// type; we only care if the type was *written* as an l-value type
/// or an r-value type.
template<typename Derived>
QualType
TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
ReferenceTypeLoc TL,
QualType ObjectType) {
const ReferenceType *T = TL.getTypePtr();
// Note that this works with the pointee-as-written.
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != T->getPointeeTypeAsWritten()) {
Result = getDerived().RebuildReferenceType(PointeeType,
T->isSpelledAsLValue(),
TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
// r-value references can be rebuilt as l-value references.
ReferenceTypeLoc NewTL;
if (isa<LValueReferenceType>(Result))
NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
else
NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
NewTL.setSigilLoc(TL.getSigilLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
LValueReferenceTypeLoc TL,
QualType ObjectType) {
return TransformReferenceType(TLB, TL, ObjectType);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
RValueReferenceTypeLoc TL,
QualType ObjectType) {
return TransformReferenceType(TLB, TL, ObjectType);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
MemberPointerTypeLoc TL,
QualType ObjectType) {
MemberPointerType *T = TL.getTypePtr();
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
// TODO: preserve source information for this.
QualType ClassType
= getDerived().TransformType(QualType(T->getClass(), 0));
if (ClassType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != T->getPointeeType() ||
ClassType != QualType(T->getClass(), 0)) {
Result = getDerived().RebuildMemberPointerType(PointeeType, ClassType,
TL.getStarLoc());
if (Result.isNull())
return QualType();
}
MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
NewTL.setSigilLoc(TL.getSigilLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
ConstantArrayTypeLoc TL,
QualType ObjectType) {
ConstantArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildConstantArrayType(ElementType,
T->getSizeModifier(),
T->getSize(),
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
ConstantArrayTypeLoc NewTL = TLB.push<ConstantArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
Expr *Size = TL.getSizeExpr();
if (Size) {
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
Size = getDerived().TransformExpr(Size).template takeAs<Expr>();
}
NewTL.setSizeExpr(Size);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformIncompleteArrayType(
TypeLocBuilder &TLB,
IncompleteArrayTypeLoc TL,
QualType ObjectType) {
IncompleteArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildIncompleteArrayType(ElementType,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(0);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
VariableArrayTypeLoc TL,
QualType ObjectType) {
VariableArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
// Array bounds are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
ExprResult SizeResult
= getDerived().TransformExpr(T->getSizeExpr());
if (SizeResult.isInvalid())
return QualType();
Expr *Size = SizeResult.take();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
Size != T->getSizeExpr()) {
Result = getDerived().RebuildVariableArrayType(ElementType,
T->getSizeModifier(),
Size,
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
VariableArrayTypeLoc NewTL = TLB.push<VariableArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(Size);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
DependentSizedArrayTypeLoc TL,
QualType ObjectType) {
DependentSizedArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
// Array bounds are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
ExprResult SizeResult
= getDerived().TransformExpr(T->getSizeExpr());
if (SizeResult.isInvalid())
return QualType();
Expr *Size = static_cast<Expr*>(SizeResult.get());
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
Size != T->getSizeExpr()) {
Result = getDerived().RebuildDependentSizedArrayType(ElementType,
T->getSizeModifier(),
Size,
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
else SizeResult.take();
// We might have any sort of array type now, but fortunately they
// all have the same location layout.
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(Size);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
TypeLocBuilder &TLB,
DependentSizedExtVectorTypeLoc TL,
QualType ObjectType) {
DependentSizedExtVectorType *T = TL.getTypePtr();
// FIXME: ext vector locs should be nested
QualType ElementType = getDerived().TransformType(T->getElementType());
if (ElementType.isNull())
return QualType();
// Vector sizes are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
if (Size.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
Size.get() != T->getSizeExpr()) {
Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
Size.take(),
T->getAttributeLoc());
if (Result.isNull())
return QualType();
}
// Result might be dependent or not.
if (isa<DependentSizedExtVectorType>(Result)) {
DependentSizedExtVectorTypeLoc NewTL
= TLB.push<DependentSizedExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
} else {
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
}
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
VectorTypeLoc TL,
QualType ObjectType) {
VectorType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(T->getElementType());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
T->getAltiVecSpecific());
if (Result.isNull())
return QualType();
}
VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
ExtVectorTypeLoc TL,
QualType ObjectType) {
VectorType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(T->getElementType());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildExtVectorType(ElementType,
T->getNumElements(),
/*FIXME*/ SourceLocation());
if (Result.isNull())
return QualType();
}
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
ParmVarDecl *
TreeTransform<Derived>::TransformFunctionTypeParam(ParmVarDecl *OldParm) {
TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
TypeSourceInfo *NewDI = getDerived().TransformType(OldDI);
if (!NewDI)
return 0;
if (NewDI == OldDI)
return OldParm;
else
return ParmVarDecl::Create(SemaRef.Context,
OldParm->getDeclContext(),
OldParm->getLocation(),
OldParm->getIdentifier(),
NewDI->getType(),
NewDI,
OldParm->getStorageClass(),
OldParm->getStorageClassAsWritten(),
/* DefArg */ NULL);
}
template<typename Derived>
bool TreeTransform<Derived>::
TransformFunctionTypeParams(FunctionProtoTypeLoc TL,
llvm::SmallVectorImpl<QualType> &PTypes,
llvm::SmallVectorImpl<ParmVarDecl*> &PVars) {
FunctionProtoType *T = TL.getTypePtr();
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) {
ParmVarDecl *OldParm = TL.getArg(i);
QualType NewType;
ParmVarDecl *NewParm;
if (OldParm) {
NewParm = getDerived().TransformFunctionTypeParam(OldParm);
if (!NewParm)
return true;
NewType = NewParm->getType();
// Deal with the possibility that we don't have a parameter
// declaration for this parameter.
} else {
NewParm = 0;
QualType OldType = T->getArgType(i);
NewType = getDerived().TransformType(OldType);
if (NewType.isNull())
return true;
}
PTypes.push_back(NewType);
PVars.push_back(NewParm);
}
return false;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
FunctionProtoTypeLoc TL,
QualType ObjectType) {
// Transform the parameters and return type.
//
// We instantiate in source order, with the return type first followed by
// the parameters, because users tend to expect this (even if they shouldn't
// rely on it!).
//
// When the function has a trailing return type, we instantiate the
// parameters before the return type, since the return type can then refer
// to the parameters themselves (via decltype, sizeof, etc.).
//
llvm::SmallVector<QualType, 4> ParamTypes;
llvm::SmallVector<ParmVarDecl*, 4> ParamDecls;
FunctionProtoType *T = TL.getTypePtr();
QualType ResultType;
if (TL.getTrailingReturn()) {
if (getDerived().TransformFunctionTypeParams(TL, ParamTypes, ParamDecls))
return QualType();
ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
if (ResultType.isNull())
return QualType();
}
else {
ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
if (ResultType.isNull())
return QualType();
if (getDerived().TransformFunctionTypeParams(TL, ParamTypes, ParamDecls))
return QualType();
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ResultType != T->getResultType() ||
!std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) {
Result = getDerived().RebuildFunctionProtoType(ResultType,
ParamTypes.data(),
ParamTypes.size(),
T->isVariadic(),
T->getTypeQuals(),
T->getExtInfo());
if (Result.isNull())
return QualType();
}
FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setTrailingReturn(TL.getTrailingReturn());
for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i)
NewTL.setArg(i, ParamDecls[i]);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
TypeLocBuilder &TLB,
FunctionNoProtoTypeLoc TL,
QualType ObjectType) {
FunctionNoProtoType *T = TL.getTypePtr();
QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
if (ResultType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ResultType != T->getResultType())
Result = getDerived().RebuildFunctionNoProtoType(ResultType);
FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setTrailingReturn(false);
return Result;
}
template<typename Derived> QualType
TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
UnresolvedUsingTypeLoc TL,
QualType ObjectType) {
UnresolvedUsingType *T = TL.getTypePtr();
Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
if (!D)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
Result = getDerived().RebuildUnresolvedUsingType(D);
if (Result.isNull())
return QualType();
}
// We might get an arbitrary type spec type back. We should at
// least always get a type spec type, though.
TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
TypedefTypeLoc TL,
QualType ObjectType) {
TypedefType *T = TL.getTypePtr();
TypedefDecl *Typedef
= cast_or_null<TypedefDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Typedef)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Typedef != T->getDecl()) {
Result = getDerived().RebuildTypedefType(Typedef);
if (Result.isNull())
return QualType();
}
TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
TypeOfExprTypeLoc TL,
QualType ObjectType) {
// typeof expressions are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
if (E.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
E.get() != TL.getUnderlyingExpr()) {
Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
if (Result.isNull())
return QualType();
}
else E.take();
TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
NewTL.setTypeofLoc(TL.getTypeofLoc());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
TypeOfTypeLoc TL,
QualType ObjectType) {
TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
if (!New_Under_TI)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
if (Result.isNull())
return QualType();
}
TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
NewTL.setTypeofLoc(TL.getTypeofLoc());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setUnderlyingTInfo(New_Under_TI);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
DecltypeTypeLoc TL,
QualType ObjectType) {
DecltypeType *T = TL.getTypePtr();
// decltype expressions are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
if (E.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
E.get() != T->getUnderlyingExpr()) {
Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
if (Result.isNull())
return QualType();
}
else E.take();
DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
RecordTypeLoc TL,
QualType ObjectType) {
RecordType *T = TL.getTypePtr();
RecordDecl *Record
= cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Record)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Record != T->getDecl()) {
Result = getDerived().RebuildRecordType(Record);
if (Result.isNull())
return QualType();
}
RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
EnumTypeLoc TL,
QualType ObjectType) {
EnumType *T = TL.getTypePtr();
EnumDecl *Enum
= cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Enum)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Enum != T->getDecl()) {
Result = getDerived().RebuildEnumType(Enum);
if (Result.isNull())
return QualType();
}
EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformInjectedClassNameType(
TypeLocBuilder &TLB,
InjectedClassNameTypeLoc TL,
QualType ObjectType) {
Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
TL.getTypePtr()->getDecl());
if (!D) return QualType();
QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
return T;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
TypeLocBuilder &TLB,
TemplateTypeParmTypeLoc TL,
QualType ObjectType) {
return TransformTypeSpecType(TLB, TL);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
TypeLocBuilder &TLB,
SubstTemplateTypeParmTypeLoc TL,
QualType ObjectType) {
return TransformTypeSpecType(TLB, TL);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
const TemplateSpecializationType *TST,
QualType ObjectType) {
// FIXME: this entire method is a temporary workaround; callers
// should be rewritten to provide real type locs.
// Fake up a TemplateSpecializationTypeLoc.
TypeLocBuilder TLB;
TemplateSpecializationTypeLoc TL
= TLB.push<TemplateSpecializationTypeLoc>(QualType(TST, 0));
SourceLocation BaseLoc = getDerived().getBaseLocation();
TL.setTemplateNameLoc(BaseLoc);
TL.setLAngleLoc(BaseLoc);
TL.setRAngleLoc(BaseLoc);
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) {
const TemplateArgument &TA = TST->getArg(i);
TemplateArgumentLoc TAL;
getDerived().InventTemplateArgumentLoc(TA, TAL);
TL.setArgLocInfo(i, TAL.getLocInfo());
}
TypeLocBuilder IgnoredTLB;
return TransformTemplateSpecializationType(IgnoredTLB, TL, ObjectType);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
TypeLocBuilder &TLB,
TemplateSpecializationTypeLoc TL,
QualType ObjectType) {
const TemplateSpecializationType *T = TL.getTypePtr();
TemplateName Template
= getDerived().TransformTemplateName(T->getTemplateName(), ObjectType);
if (Template.isNull())
return QualType();
TemplateArgumentListInfo NewTemplateArgs;
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = T->getNumArgs(); i != e; ++i) {
TemplateArgumentLoc Loc;
if (getDerived().TransformTemplateArgument(TL.getArgLoc(i), Loc))
return QualType();
NewTemplateArgs.addArgument(Loc);
}
// FIXME: maybe don't rebuild if all the template arguments are the same.
QualType Result =
getDerived().RebuildTemplateSpecializationType(Template,
TL.getTemplateNameLoc(),
NewTemplateArgs);
if (!Result.isNull()) {
TemplateSpecializationTypeLoc NewTL
= TLB.push<TemplateSpecializationTypeLoc>(Result);
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
}
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
ElaboratedTypeLoc TL,
QualType ObjectType) {
ElaboratedType *T = TL.getTypePtr();
NestedNameSpecifier *NNS = 0;
// NOTE: the qualifier in an ElaboratedType is optional.
if (T->getQualifier() != 0) {
NNS = getDerived().TransformNestedNameSpecifier(T->getQualifier(),
TL.getQualifierRange(),
ObjectType);
if (!NNS)
return QualType();
}
QualType NamedT;
// FIXME: this test is meant to workaround a problem (failing assertion)
// occurring if directly executing the code in the else branch.
if (isa<TemplateSpecializationTypeLoc>(TL.getNamedTypeLoc())) {
TemplateSpecializationTypeLoc OldNamedTL
= cast<TemplateSpecializationTypeLoc>(TL.getNamedTypeLoc());
const TemplateSpecializationType* OldTST
= OldNamedTL.getType()->template getAs<TemplateSpecializationType>();
NamedT = TransformTemplateSpecializationType(OldTST, ObjectType);
if (NamedT.isNull())
return QualType();
TemplateSpecializationTypeLoc NewNamedTL
= TLB.push<TemplateSpecializationTypeLoc>(NamedT);
NewNamedTL.copy(OldNamedTL);
}
else {
NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
if (NamedT.isNull())
return QualType();
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
NNS != T->getQualifier() ||
NamedT != T->getNamedType()) {
Result = getDerived().RebuildElaboratedType(TL.getKeywordLoc(),
T->getKeyword(), NNS, NamedT);
if (Result.isNull())
return QualType();
}
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setKeywordLoc(TL.getKeywordLoc());
NewTL.setQualifierRange(TL.getQualifierRange());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB,
DependentNameTypeLoc TL,
QualType ObjectType) {
DependentNameType *T = TL.getTypePtr();
NestedNameSpecifier *NNS
= getDerived().TransformNestedNameSpecifier(T->getQualifier(),
TL.getQualifierRange(),
ObjectType);
if (!NNS)
return QualType();
QualType Result
= getDerived().RebuildDependentNameType(T->getKeyword(), NNS,
T->getIdentifier(),
TL.getKeywordLoc(),
TL.getQualifierRange(),
TL.getNameLoc());
if (Result.isNull())
return QualType();
if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
QualType NamedT = ElabT->getNamedType();
TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setKeywordLoc(TL.getKeywordLoc());
NewTL.setQualifierRange(TL.getQualifierRange());
} else {
DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
NewTL.setKeywordLoc(TL.getKeywordLoc());
NewTL.setQualifierRange(TL.getQualifierRange());
NewTL.setNameLoc(TL.getNameLoc());
}
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL,
QualType ObjectType) {
DependentTemplateSpecializationType *T = TL.getTypePtr();
NestedNameSpecifier *NNS
= getDerived().TransformNestedNameSpecifier(T->getQualifier(),
TL.getQualifierRange(),
ObjectType);
if (!NNS)
return QualType();
TemplateArgumentListInfo NewTemplateArgs;
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
for (unsigned I = 0, E = T->getNumArgs(); I != E; ++I) {
TemplateArgumentLoc Loc;
if (getDerived().TransformTemplateArgument(TL.getArgLoc(I), Loc))
return QualType();
NewTemplateArgs.addArgument(Loc);
}
QualType Result
= getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(),
NNS,
TL.getQualifierRange(),
T->getIdentifier(),
TL.getNameLoc(),
NewTemplateArgs);
if (Result.isNull())
return QualType();
if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
QualType NamedT = ElabT->getNamedType();
// Copy information relevant to the template specialization.
TemplateSpecializationTypeLoc NamedTL
= TLB.push<TemplateSpecializationTypeLoc>(NamedT);
NamedTL.setLAngleLoc(TL.getLAngleLoc());
NamedTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
NamedTL.setArgLocInfo(I, TL.getArgLocInfo(I));
// Copy information relevant to the elaborated type.
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setKeywordLoc(TL.getKeywordLoc());
NewTL.setQualifierRange(TL.getQualifierRange());
} else {
TypeLoc NewTL(Result, TL.getOpaqueData());
TLB.pushFullCopy(NewTL);
}
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
ObjCInterfaceTypeLoc TL,
QualType ObjectType) {
// ObjCInterfaceType is never dependent.
TLB.pushFullCopy(TL);
return TL.getType();
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
ObjCObjectTypeLoc TL,
QualType ObjectType) {
// ObjCObjectType is never dependent.
TLB.pushFullCopy(TL);
return TL.getType();
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
ObjCObjectPointerTypeLoc TL,
QualType ObjectType) {
// ObjCObjectPointerType is never dependent.
TLB.pushFullCopy(TL);
return TL.getType();
}
//===----------------------------------------------------------------------===//
// Statement transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
return SemaRef.Owned(S);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
return getDerived().TransformCompoundStmt(S, false);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
bool IsStmtExpr) {
bool SubStmtInvalid = false;
bool SubStmtChanged = false;
ASTOwningVector<Stmt*> Statements(getSema());
for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end();
B != BEnd; ++B) {
StmtResult Result = getDerived().TransformStmt(*B);
if (Result.isInvalid()) {
// Immediately fail if this was a DeclStmt, since it's very
// likely that this will cause problems for future statements.
if (isa<DeclStmt>(*B))
return StmtError();
// Otherwise, just keep processing substatements and fail later.
SubStmtInvalid = true;
continue;
}
SubStmtChanged = SubStmtChanged || Result.get() != *B;
Statements.push_back(Result.takeAs<Stmt>());
}
if (SubStmtInvalid)
return StmtError();
if (!getDerived().AlwaysRebuild() &&
!SubStmtChanged)
return SemaRef.Owned(S);
return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
move_arg(Statements),
S->getRBracLoc(),
IsStmtExpr);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
ExprResult LHS, RHS;
{
// The case value expressions are not potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
// Transform the left-hand case value.
LHS = getDerived().TransformExpr(S->getLHS());
if (LHS.isInvalid())
return StmtError();
// Transform the right-hand case value (for the GNU case-range extension).
RHS = getDerived().TransformExpr(S->getRHS());
if (RHS.isInvalid())
return StmtError();
}
// Build the case statement.
// Case statements are always rebuilt so that they will attached to their
// transformed switch statement.
StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
LHS.get(),
S->getEllipsisLoc(),
RHS.get(),
S->getColonLoc());
if (Case.isInvalid())
return StmtError();
// Transform the statement following the case
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// Attach the body to the case statement
return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
// Transform the statement following the default case
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// Default statements are always rebuilt
return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// FIXME: Pass the real colon location in.
SourceLocation ColonLoc = SemaRef.PP.getLocForEndOfToken(S->getIdentLoc());
return getDerived().RebuildLabelStmt(S->getIdentLoc(), S->getID(), ColonLoc,
SubStmt.get(), S->HasUnusedAttribute());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
// Transform the condition
ExprResult Cond;
VarDecl *ConditionVar = 0;
if (S->getConditionVariable()) {
ConditionVar
= cast_or_null<VarDecl>(
getDerived().TransformDefinition(
S->getConditionVariable()->getLocation(),
S->getConditionVariable()));
if (!ConditionVar)
return StmtError();
} else {
Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
// Convert the condition to a boolean value.
if (S->getCond()) {
ExprResult CondE = getSema().ActOnBooleanCondition(0,
S->getIfLoc(),
Cond.get());
if (CondE.isInvalid())
return StmtError();
Cond = CondE.get();
}
}
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
return StmtError();
// Transform the "then" branch.
StmtResult Then = getDerived().TransformStmt(S->getThen());
if (Then.isInvalid())
return StmtError();
// Transform the "else" branch.
StmtResult Else = getDerived().TransformStmt(S->getElse());
if (Else.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
FullCond.get() == S->getCond() &&
ConditionVar == S->getConditionVariable() &&
Then.get() == S->getThen() &&
Else.get() == S->getElse())
return SemaRef.Owned(S);
return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
Then.get(),
S->getElseLoc(), Else.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
// Transform the condition.
ExprResult Cond;
VarDecl *ConditionVar = 0;
if (S->getConditionVariable()) {
ConditionVar
= cast_or_null<VarDecl>(
getDerived().TransformDefinition(
S->getConditionVariable()->getLocation(),
S->getConditionVariable()));
if (!ConditionVar)
return StmtError();
} else {
Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
}
// Rebuild the switch statement.
StmtResult Switch
= getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(),
ConditionVar);
if (Switch.isInvalid())
return StmtError();
// Transform the body of the switch statement.
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// Complete the switch statement.
return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
// Transform the condition
ExprResult Cond;
VarDecl *ConditionVar = 0;
if (S->getConditionVariable()) {
ConditionVar
= cast_or_null<VarDecl>(
getDerived().TransformDefinition(
S->getConditionVariable()->getLocation(),
S->getConditionVariable()));
if (!ConditionVar)
return StmtError();
} else {
Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (S->getCond()) {
// Convert the condition to a boolean value.
ExprResult CondE = getSema().ActOnBooleanCondition(0,
S->getWhileLoc(),
Cond.get());
if (CondE.isInvalid())
return StmtError();
Cond = CondE;
}
}
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
return StmtError();
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
FullCond.get() == S->getCond() &&
ConditionVar == S->getConditionVariable() &&
Body.get() == S->getBody())
return Owned(S);
return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond,
ConditionVar, Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// Transform the condition
ExprResult Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == S->getCond() &&
Body.get() == S->getBody())
return SemaRef.Owned(S);
return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
/*FIXME:*/S->getWhileLoc(), Cond.get(),
S->getRParenLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
// Transform the initialization statement
StmtResult Init = getDerived().TransformStmt(S->getInit());
if (Init.isInvalid())
return StmtError();
// Transform the condition
ExprResult Cond;
VarDecl *ConditionVar = 0;
if (S->getConditionVariable()) {
ConditionVar
= cast_or_null<VarDecl>(
getDerived().TransformDefinition(
S->getConditionVariable()->getLocation(),
S->getConditionVariable()));
if (!ConditionVar)
return StmtError();
} else {
Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (S->getCond()) {
// Convert the condition to a boolean value.
ExprResult CondE = getSema().ActOnBooleanCondition(0,
S->getForLoc(),
Cond.get());
if (CondE.isInvalid())
return StmtError();
Cond = CondE.get();
}
}
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
return StmtError();
// Transform the increment
ExprResult Inc = getDerived().TransformExpr(S->getInc());
if (Inc.isInvalid())
return StmtError();
Sema::FullExprArg FullInc(getSema().MakeFullExpr(Inc.get()));
if (S->getInc() && !FullInc.get())
return StmtError();
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
Init.get() == S->getInit() &&
FullCond.get() == S->getCond() &&
Inc.get() == S->getInc() &&
Body.get() == S->getBody())
return SemaRef.Owned(S);
return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
Init.get(), FullCond, ConditionVar,
FullInc, S->getRParenLoc(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
// Goto statements must always be rebuilt, to resolve the label.
return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
S->getLabel());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
ExprResult Target = getDerived().TransformExpr(S->getTarget());
if (Target.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
Target.get() == S->getTarget())
return SemaRef.Owned(S);
return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
Target.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
return SemaRef.Owned(S);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
return SemaRef.Owned(S);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
ExprResult Result = getDerived().TransformExpr(S->getRetValue());
if (Result.isInvalid())
return StmtError();
// FIXME: We always rebuild the return statement because there is no way
// to tell whether the return type of the function has changed.
return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
bool DeclChanged = false;
llvm::SmallVector<Decl *, 4> Decls;
for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
Decl *Transformed = getDerived().TransformDefinition((*D)->getLocation(),
*D);
if (!Transformed)
return StmtError();
if (Transformed != *D)
DeclChanged = true;
Decls.push_back(Transformed);
}
if (!getDerived().AlwaysRebuild() && !DeclChanged)
return SemaRef.Owned(S);
return getDerived().RebuildDeclStmt(Decls.data(), Decls.size(),
S->getStartLoc(), S->getEndLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSwitchCase(SwitchCase *S) {
assert(false && "SwitchCase is abstract and cannot be transformed");
return SemaRef.Owned(S);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformAsmStmt(AsmStmt *S) {
ASTOwningVector<Expr*> Constraints(getSema());
ASTOwningVector<Expr*> Exprs(getSema());
llvm::SmallVector<IdentifierInfo *, 4> Names;
ExprResult AsmString;
ASTOwningVector<Expr*> Clobbers(getSema());
bool ExprsChanged = false;
// Go through the outputs.
for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
Names.push_back(S->getOutputIdentifier(I));
// No need to transform the constraint literal.
Constraints.push_back(S->getOutputConstraintLiteral(I));
// Transform the output expr.
Expr *OutputExpr = S->getOutputExpr(I);
ExprResult Result = getDerived().TransformExpr(OutputExpr);
if (Result.isInvalid())
return StmtError();
ExprsChanged |= Result.get() != OutputExpr;
Exprs.push_back(Result.get());
}
// Go through the inputs.
for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
Names.push_back(S->getInputIdentifier(I));
// No need to transform the constraint literal.
Constraints.push_back(S->getInputConstraintLiteral(I));
// Transform the input expr.
Expr *InputExpr = S->getInputExpr(I);
ExprResult Result = getDerived().TransformExpr(InputExpr);
if (Result.isInvalid())
return StmtError();
ExprsChanged |= Result.get() != InputExpr;
Exprs.push_back(Result.get());
}
if (!getDerived().AlwaysRebuild() && !ExprsChanged)
return SemaRef.Owned(S);
// Go through the clobbers.
for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
Clobbers.push_back(S->getClobber(I));
// No need to transform the asm string literal.
AsmString = SemaRef.Owned(S->getAsmString());
return getDerived().RebuildAsmStmt(S->getAsmLoc(),
S->isSimple(),
S->isVolatile(),
S->getNumOutputs(),
S->getNumInputs(),
Names.data(),
move_arg(Constraints),
move_arg(Exprs),
AsmString.get(),
move_arg(Clobbers),
S->getRParenLoc(),
S->isMSAsm());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
// Transform the body of the @try.
StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
if (TryBody.isInvalid())
return StmtError();
// Transform the @catch statements (if present).
bool AnyCatchChanged = false;
ASTOwningVector<Stmt*> CatchStmts(SemaRef);
for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
if (Catch.isInvalid())
return StmtError();
if (Catch.get() != S->getCatchStmt(I))
AnyCatchChanged = true;
CatchStmts.push_back(Catch.release());
}
// Transform the @finally statement (if present).
StmtResult Finally;
if (S->getFinallyStmt()) {
Finally = getDerived().TransformStmt(S->getFinallyStmt());
if (Finally.isInvalid())
return StmtError();
}
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
TryBody.get() == S->getTryBody() &&
!AnyCatchChanged &&
Finally.get() == S->getFinallyStmt())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
move_arg(CatchStmts), Finally.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
// Transform the @catch parameter, if there is one.
VarDecl *Var = 0;
if (VarDecl *FromVar = S->getCatchParamDecl()) {
TypeSourceInfo *TSInfo = 0;
if (FromVar->getTypeSourceInfo()) {
TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
if (!TSInfo)
return StmtError();
}
QualType T;
if (TSInfo)
T = TSInfo->getType();
else {
T = getDerived().TransformType(FromVar->getType());
if (T.isNull())
return StmtError();
}
Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
if (!Var)
return StmtError();
}
StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
if (Body.isInvalid())
return StmtError();
return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
S->getRParenLoc(),
Var, Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
if (Body.isInvalid())
return StmtError();
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
Body.get() == S->getFinallyBody())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
ExprResult Operand;
if (S->getThrowExpr()) {
Operand = getDerived().TransformExpr(S->getThrowExpr());
if (Operand.isInvalid())
return StmtError();
}
if (!getDerived().AlwaysRebuild() &&
Operand.get() == S->getThrowExpr())
return getSema().Owned(S);
return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
ObjCAtSynchronizedStmt *S) {
// Transform the object we are locking.
ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
if (Object.isInvalid())
return StmtError();
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
if (Body.isInvalid())
return StmtError();
// If nothing change, just retain the current statement.
if (!getDerived().AlwaysRebuild() &&
Object.get() == S->getSynchExpr() &&
Body.get() == S->getSynchBody())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
Object.get(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCForCollectionStmt(
ObjCForCollectionStmt *S) {
// Transform the element statement.
StmtResult Element = getDerived().TransformStmt(S->getElement());
if (Element.isInvalid())
return StmtError();
// Transform the collection expression.
ExprResult Collection = getDerived().TransformExpr(S->getCollection());
if (Collection.isInvalid())
return StmtError();
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
Element.get() == S->getElement() &&
Collection.get() == S->getCollection() &&
Body.get() == S->getBody())
return SemaRef.Owned(S);
// Build a new statement.
return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
/*FIXME:*/S->getForLoc(),
Element.get(),
Collection.get(),
S->getRParenLoc(),
Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
// Transform the exception declaration, if any.
VarDecl *Var = 0;
if (S->getExceptionDecl()) {
VarDecl *ExceptionDecl = S->getExceptionDecl();
TypeSourceInfo *T = getDerived().TransformType(
ExceptionDecl->getTypeSourceInfo());
if (!T)
return StmtError();
Var = getDerived().RebuildExceptionDecl(ExceptionDecl, T,
ExceptionDecl->getIdentifier(),
ExceptionDecl->getLocation());
if (!Var || Var->isInvalidDecl())
return StmtError();
}
// Transform the actual exception handler.
StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
if (Handler.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
!Var &&
Handler.get() == S->getHandlerBlock())
return SemaRef.Owned(S);
return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(),
Var,
Handler.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
// Transform the try block itself.
StmtResult TryBlock
= getDerived().TransformCompoundStmt(S->getTryBlock());
if (TryBlock.isInvalid())
return StmtError();
// Transform the handlers.
bool HandlerChanged = false;
ASTOwningVector<Stmt*> Handlers(SemaRef);
for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
StmtResult Handler
= getDerived().TransformCXXCatchStmt(S->getHandler(I));
if (Handler.isInvalid())
return StmtError();
HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
Handlers.push_back(Handler.takeAs<Stmt>());
}
if (!getDerived().AlwaysRebuild() &&
TryBlock.get() == S->getTryBlock() &&
!HandlerChanged)
return SemaRef.Owned(S);
return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
move_arg(Handlers));
}
//===----------------------------------------------------------------------===//
// Expression transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
NestedNameSpecifier *Qualifier = 0;
if (E->getQualifier()) {
Qualifier = getDerived().TransformNestedNameSpecifier(E->getQualifier(),
E->getQualifierRange());
if (!Qualifier)
return ExprError();
}
ValueDecl *ND
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
E->getDecl()));
if (!ND)
return ExprError();
DeclarationNameInfo NameInfo = E->getNameInfo();
if (NameInfo.getName()) {
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
if (!NameInfo.getName())
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Qualifier == E->getQualifier() &&
ND == E->getDecl() &&
NameInfo.getName() == E->getDecl()->getDeclName() &&
!E->hasExplicitTemplateArgs()) {
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
SemaRef.MarkDeclarationReferenced(E->getLocation(), ND);
return SemaRef.Owned(E);
}
TemplateArgumentListInfo TransArgs, *TemplateArgs = 0;
if (E->hasExplicitTemplateArgs()) {
TemplateArgs = &TransArgs;
TransArgs.setLAngleLoc(E->getLAngleLoc());
TransArgs.setRAngleLoc(E->getRAngleLoc());
for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) {
TemplateArgumentLoc Loc;
if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc))
return ExprError();
TransArgs.addArgument(Loc);
}
}
return getDerived().RebuildDeclRefExpr(Qualifier, E->getQualifierRange(),
ND, NameInfo, TemplateArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
E->getRParen());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
E->getOpcode(),
SubExpr.get());
}
template<typename Derived>
ExprResult
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
// Transform the type.
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
if (!Type)
return ExprError();
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
// Transform all of the components into components similar to what the
// parser uses.
// FIXME: It would be slightly more efficient in the non-dependent case to
// just map FieldDecls, rather than requiring the rebuilder to look for
// the fields again. However, __builtin_offsetof is rare enough in
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
// template code that we don't care.
bool ExprChanged = false;
typedef Sema::OffsetOfComponent Component;
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
typedef OffsetOfExpr::OffsetOfNode Node;
llvm::SmallVector<Component, 4> Components;
for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
const Node &ON = E->getComponent(I);
Component Comp;
Comp.isBrackets = true;
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
Comp.LocStart = ON.getRange().getBegin();
Comp.LocEnd = ON.getRange().getEnd();
switch (ON.getKind()) {
case Node::Array: {
Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
ExprResult Index = getDerived().TransformExpr(FromIndex);
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
if (Index.isInvalid())
return ExprError();
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
ExprChanged = ExprChanged || Index.get() != FromIndex;
Comp.isBrackets = true;
Comp.U.E = Index.get();
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
break;
}
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
case Node::Field:
case Node::Identifier:
Comp.isBrackets = false;
Comp.U.IdentInfo = ON.getFieldName();
if (!Comp.U.IdentInfo)
continue;
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
break;
case Node::Base:
// Will be recomputed during the rebuild.
continue;
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
}
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
Components.push_back(Comp);
}
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
// If nothing changed, retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeSourceInfo() &&
!ExprChanged)
return SemaRef.Owned(E);
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@102542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-29 02:16:22 +04:00
// Build a new offsetof expression.
return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
Components.data(), Components.size(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) {
if (E->isArgumentType()) {
TypeSourceInfo *OldT = E->getArgumentTypeInfo();
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
if (!NewT)
return ExprError();
if (!getDerived().AlwaysRebuild() && OldT == NewT)
return SemaRef.Owned(E);
return getDerived().RebuildSizeOfAlignOf(NewT, E->getOperatorLoc(),
E->isSizeOf(),
E->getSourceRange());
}
ExprResult SubExpr;
{
// C++0x [expr.sizeof]p1:
// The operand is either an expression, which is an unevaluated operand
// [...]
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
return SemaRef.Owned(E);
}
return getDerived().RebuildSizeOfAlignOf(SubExpr.get(), E->getOperatorLoc(),
E->isSizeOf(),
E->getSourceRange());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return SemaRef.Owned(E);
return getDerived().RebuildArraySubscriptExpr(LHS.get(),
/*FIXME:*/E->getLHS()->getLocStart(),
RHS.get(),
E->getRBracketLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
// Transform the callee.
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
if (Callee.isInvalid())
return ExprError();
// Transform arguments.
bool ArgChanged = false;
ASTOwningVector<Expr*> Args(SemaRef);
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
ExprResult Arg = getDerived().TransformExpr(E->getArg(I));
if (Arg.isInvalid())
return ExprError();
ArgChanged = ArgChanged || Arg.get() != E->getArg(I);
Args.push_back(Arg.get());
}
if (!getDerived().AlwaysRebuild() &&
Callee.get() == E->getCallee() &&
!ArgChanged)
return SemaRef.Owned(E);
// FIXME: Wrong source location information for the '('.
SourceLocation FakeLParenLoc
= ((Expr *)Callee.get())->getSourceRange().getBegin();
return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
move_arg(Args),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
NestedNameSpecifier *Qualifier = 0;
if (E->hasQualifier()) {
Qualifier
= getDerived().TransformNestedNameSpecifier(E->getQualifier(),
E->getQualifierRange());
if (Qualifier == 0)
return ExprError();
}
ValueDecl *Member
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
E->getMemberDecl()));
if (!Member)
return ExprError();
NamedDecl *FoundDecl = E->getFoundDecl();
if (FoundDecl == E->getMemberDecl()) {
FoundDecl = Member;
} else {
FoundDecl = cast_or_null<NamedDecl>(
getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
if (!FoundDecl)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase() &&
Qualifier == E->getQualifier() &&
Member == E->getMemberDecl() &&
FoundDecl == E->getFoundDecl() &&
!E->hasExplicitTemplateArgs()) {
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
SemaRef.MarkDeclarationReferenced(E->getMemberLoc(), Member);
return SemaRef.Owned(E);
}
TemplateArgumentListInfo TransArgs;
if (E->hasExplicitTemplateArgs()) {
TransArgs.setLAngleLoc(E->getLAngleLoc());
TransArgs.setRAngleLoc(E->getRAngleLoc());
for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) {
TemplateArgumentLoc Loc;
if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc))
return ExprError();
TransArgs.addArgument(Loc);
}
}
// FIXME: Bogus source location for the operator
SourceLocation FakeOperatorLoc
= SemaRef.PP.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
// FIXME: to do this check properly, we will need to preserve the
// first-qualifier-in-scope here, just in case we had a dependent
// base (and therefore couldn't do the check) and a
// nested-name-qualifier (and therefore could do the lookup).
NamedDecl *FirstQualifierInScope = 0;
return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
E->isArrow(),
Qualifier,
E->getQualifierRange(),
E->getMemberNameInfo(),
Member,
FoundDecl,
(E->hasExplicitTemplateArgs()
? &TransArgs : 0),
FirstQualifierInScope);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return SemaRef.Owned(E);
return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
LHS.get(), RHS.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCompoundAssignOperator(
CompoundAssignOperator *E) {
return getDerived().TransformBinaryOperator(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
ExprResult Cond = getDerived().TransformExpr(E->getCond());
if (Cond.isInvalid())
return ExprError();
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == E->getCond() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return SemaRef.Owned(E);
return getDerived().RebuildConditionalOperator(Cond.get(),
E->getQuestionLoc(),
LHS.get(),
E->getColonLoc(),
RHS.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
// Implicit casts are eliminated during transformation, since they
// will be recomputed by semantic analysis after transformation.
return getDerived().TransformExpr(E->getSubExprAsWritten());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
Type,
E->getRParenLoc(),
SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
TypeSourceInfo *OldT = E->getTypeSourceInfo();
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
if (!NewT)
return ExprError();
ExprResult Init = getDerived().TransformExpr(E->getInitializer());
if (Init.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
OldT == NewT &&
Init.get() == E->getInitializer())
return SemaRef.Owned(E);
// Note: the expression type doesn't necessarily match the
// type-as-written, but that's okay, because it should always be
// derivable from the initializer.
return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
/*FIXME:*/E->getInitializer()->getLocEnd(),
Init.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
// FIXME: Bad source location
SourceLocation FakeOperatorLoc
= SemaRef.PP.getLocForEndOfToken(E->getBase()->getLocEnd());
return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
E->getAccessorLoc(),
E->getAccessor());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
bool InitChanged = false;
ASTOwningVector<Expr*, 4> Inits(SemaRef);
for (unsigned I = 0, N = E->getNumInits(); I != N; ++I) {
ExprResult Init = getDerived().TransformExpr(E->getInit(I));
if (Init.isInvalid())
return ExprError();
InitChanged = InitChanged || Init.get() != E->getInit(I);
Inits.push_back(Init.get());
}
if (!getDerived().AlwaysRebuild() && !InitChanged)
return SemaRef.Owned(E);
return getDerived().RebuildInitList(E->getLBraceLoc(), move_arg(Inits),
E->getRBraceLoc(), E->getType());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
Designation Desig;
// transform the initializer value
ExprResult Init = getDerived().TransformExpr(E->getInit());
if (Init.isInvalid())
return ExprError();
// transform the designators.
ASTOwningVector<Expr*, 4> ArrayExprs(SemaRef);
bool ExprChanged = false;
for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
DEnd = E->designators_end();
D != DEnd; ++D) {
if (D->isFieldDesignator()) {
Desig.AddDesignator(Designator::getField(D->getFieldName(),
D->getDotLoc(),
D->getFieldLoc()));
continue;
}
if (D->isArrayDesignator()) {
ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
if (Index.isInvalid())
return ExprError();
Desig.AddDesignator(Designator::getArray(Index.get(),
D->getLBracketLoc()));
ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
ArrayExprs.push_back(Index.release());
continue;
}
assert(D->isArrayRangeDesignator() && "New kind of designator?");
ExprResult Start
= getDerived().TransformExpr(E->getArrayRangeStart(*D));
if (Start.isInvalid())
return ExprError();
ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
if (End.isInvalid())
return ExprError();
Desig.AddDesignator(Designator::getArrayRange(Start.get(),
End.get(),
D->getLBracketLoc(),
D->getEllipsisLoc()));
ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
End.get() != E->getArrayRangeEnd(*D);
ArrayExprs.push_back(Start.release());
ArrayExprs.push_back(End.release());
}
if (!getDerived().AlwaysRebuild() &&
Init.get() == E->getInit() &&
!ExprChanged)
return SemaRef.Owned(E);
return getDerived().RebuildDesignatedInitExpr(Desig, move_arg(ArrayExprs),
E->getEqualOrColonLoc(),
E->usesGNUSyntax(), Init.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImplicitValueInitExpr(
ImplicitValueInitExpr *E) {
TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
// FIXME: Will we ever have proper type location here? Will we actually
// need to transform the type?
QualType T = getDerived().TransformType(E->getType());
if (T.isNull())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getType())
return SemaRef.Owned(E);
return getDerived().RebuildImplicitValueInitExpr(T);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
if (!TInfo)
return ExprError();
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getWrittenTypeInfo() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
TInfo, E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
bool ArgumentChanged = false;
ASTOwningVector<Expr*, 4> Inits(SemaRef);
for (unsigned I = 0, N = E->getNumExprs(); I != N; ++I) {
ExprResult Init = getDerived().TransformExpr(E->getExpr(I));
if (Init.isInvalid())
return ExprError();
ArgumentChanged = ArgumentChanged || Init.get() != E->getExpr(I);
Inits.push_back(Init.get());
}
return getDerived().RebuildParenListExpr(E->getLParenLoc(),
move_arg(Inits),
E->getRParenLoc());
}
/// \brief Transform an address-of-label expression.
///
/// By default, the transformation of an address-of-label expression always
/// rebuilds the expression, so that the label identifier can be resolved to
/// the corresponding label statement by semantic analysis.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
E->getLabel());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
StmtResult SubStmt
= getDerived().TransformCompoundStmt(E->getSubStmt(), true);
if (SubStmt.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubStmt.get() == E->getSubStmt())
return SemaRef.Owned(E);
return getDerived().RebuildStmtExpr(E->getLParenLoc(),
SubStmt.get(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformTypesCompatibleExpr(TypesCompatibleExpr *E) {
TypeSourceInfo *TInfo1;
TypeSourceInfo *TInfo2;
TInfo1 = getDerived().TransformType(E->getArgTInfo1());
if (!TInfo1)
return ExprError();
TInfo2 = getDerived().TransformType(E->getArgTInfo2());
if (!TInfo2)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo1 == E->getArgTInfo1() &&
TInfo2 == E->getArgTInfo2())
return SemaRef.Owned(E);
return getDerived().RebuildTypesCompatibleExpr(E->getBuiltinLoc(),
TInfo1, TInfo2,
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
ExprResult Cond = getDerived().TransformExpr(E->getCond());
if (Cond.isInvalid())
return ExprError();
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == E->getCond() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return SemaRef.Owned(E);
return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
Cond.get(), LHS.get(), RHS.get(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
switch (E->getOperator()) {
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
return ExprError();
case OO_Call: {
// This is a call to an object's operator().
assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
// Transform the object itself.
ExprResult Object = getDerived().TransformExpr(E->getArg(0));
if (Object.isInvalid())
return ExprError();
// FIXME: Poor location information
SourceLocation FakeLParenLoc
= SemaRef.PP.getLocForEndOfToken(
static_cast<Expr *>(Object.get())->getLocEnd());
// Transform the call arguments.
ASTOwningVector<Expr*> Args(SemaRef);
for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
if (getDerived().DropCallArgument(E->getArg(I)))
break;
ExprResult Arg = getDerived().TransformExpr(E->getArg(I));
if (Arg.isInvalid())
return ExprError();
Args.push_back(Arg.release());
}
return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc,
move_arg(Args),
E->getLocEnd());
}
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
case OO_##Name:
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"
case OO_Subscript:
// Handled below.
break;
case OO_Conditional:
llvm_unreachable("conditional operator is not actually overloadable");
return ExprError();
case OO_None:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("not an overloaded operator?");
return ExprError();
}
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
if (Callee.isInvalid())
return ExprError();
ExprResult First = getDerived().TransformExpr(E->getArg(0));
if (First.isInvalid())
return ExprError();
ExprResult Second;
if (E->getNumArgs() == 2) {
Second = getDerived().TransformExpr(E->getArg(1));
if (Second.isInvalid())
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Callee.get() == E->getCallee() &&
First.get() == E->getArg(0) &&
(E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
return SemaRef.Owned(E);
return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
E->getOperatorLoc(),
Callee.get(),
First.get(),
Second.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
return getDerived().TransformCallExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
// FIXME: Poor source location information here.
SourceLocation FakeLAngleLoc
= SemaRef.PP.getLocForEndOfToken(E->getOperatorLoc());
SourceLocation FakeRAngleLoc = E->getSubExpr()->getSourceRange().getBegin();
SourceLocation FakeRParenLoc
= SemaRef.PP.getLocForEndOfToken(
E->getSubExpr()->getSourceRange().getEnd());
return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(),
E->getStmtClass(),
FakeLAngleLoc,
Type,
FakeRAngleLoc,
FakeRAngleLoc,
SubExpr.get(),
FakeRParenLoc);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
CXXReinterpretCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
CXXFunctionalCastExpr *E) {
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildCXXFunctionalCastExpr(Type,
/*FIXME:*/E->getSubExpr()->getLocStart(),
SubExpr.get(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
if (E->isTypeOperand()) {
TypeSourceInfo *TInfo
= getDerived().TransformType(E->getTypeOperandSourceInfo());
if (!TInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getTypeOperandSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildCXXTypeidExpr(E->getType(),
E->getLocStart(),
TInfo,
E->getLocEnd());
}
// We don't know whether the expression is potentially evaluated until
// after we perform semantic analysis, so the expression is potentially
// potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef,
Sema::PotentiallyPotentiallyEvaluated);
ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getExprOperand())
return SemaRef.Owned(E);
return getDerived().RebuildCXXTypeidExpr(E->getType(),
E->getLocStart(),
SubExpr.get(),
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
if (E->isTypeOperand()) {
TypeSourceInfo *TInfo
= getDerived().TransformType(E->getTypeOperandSourceInfo());
if (!TInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getTypeOperandSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildCXXTypeidExpr(E->getType(),
E->getLocStart(),
TInfo,
E->getLocEnd());
}
// We don't know whether the expression is potentially evaluated until
// after we perform semantic analysis, so the expression is potentially
// potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getExprOperand())
return SemaRef.Owned(E);
return getDerived().RebuildCXXUuidofExpr(E->getType(),
E->getLocStart(),
SubExpr.get(),
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
CXXNullPtrLiteralExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
DeclContext *DC = getSema().getFunctionLevelDeclContext();
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC);
QualType T = MD->getThisType(getSema().Context);
if (!getDerived().AlwaysRebuild() && T == E->getType())
return SemaRef.Owned(E);
return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getSubExpr())
return SemaRef.Owned(E);
return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
ParmVarDecl *Param
= cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
E->getParam()));
if (!Param)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Param == E->getParam())
return SemaRef.Owned(E);
return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
CXXScalarValueInitExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
if (!T)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildCXXScalarValueInitExpr(T,
/*FIXME:*/T->getTypeLoc().getEndLoc(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
// Transform the type that we're allocating
TypeSourceInfo *AllocTypeInfo
= getDerived().TransformType(E->getAllocatedTypeSourceInfo());
if (!AllocTypeInfo)
return ExprError();
// Transform the size of the array we're allocating (if any).
ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
if (ArraySize.isInvalid())
return ExprError();
// Transform the placement arguments (if any).
bool ArgumentChanged = false;
ASTOwningVector<Expr*> PlacementArgs(SemaRef);
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
if (getDerived().DropCallArgument(E->getPlacementArg(I))) {
ArgumentChanged = true;
break;
}
ExprResult Arg = getDerived().TransformExpr(E->getPlacementArg(I));
if (Arg.isInvalid())
return ExprError();
ArgumentChanged = ArgumentChanged || Arg.get() != E->getPlacementArg(I);
PlacementArgs.push_back(Arg.take());
}
// transform the constructor arguments (if any).
ASTOwningVector<Expr*> ConstructorArgs(SemaRef);
for (unsigned I = 0, N = E->getNumConstructorArgs(); I != N; ++I) {
if (getDerived().DropCallArgument(E->getConstructorArg(I))) {
ArgumentChanged = true;
break;
}
ExprResult Arg = getDerived().TransformExpr(E->getConstructorArg(I));
if (Arg.isInvalid())
return ExprError();
ArgumentChanged = ArgumentChanged || Arg.get() != E->getConstructorArg(I);
ConstructorArgs.push_back(Arg.take());
}
// Transform constructor, new operator, and delete operator.
CXXConstructorDecl *Constructor = 0;
if (E->getConstructor()) {
Constructor = cast_or_null<CXXConstructorDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getConstructor()));
if (!Constructor)
return ExprError();
}
FunctionDecl *OperatorNew = 0;
if (E->getOperatorNew()) {
OperatorNew = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getOperatorNew()));
if (!OperatorNew)
return ExprError();
}
FunctionDecl *OperatorDelete = 0;
if (E->getOperatorDelete()) {
OperatorDelete = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getOperatorDelete()));
if (!OperatorDelete)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
ArraySize.get() == E->getArraySize() &&
Constructor == E->getConstructor() &&
OperatorNew == E->getOperatorNew() &&
OperatorDelete == E->getOperatorDelete() &&
!ArgumentChanged) {
// Mark any declarations we need as referenced.
// FIXME: instantiation-specific.
if (Constructor)
SemaRef.MarkDeclarationReferenced(E->getLocStart(), Constructor);
if (OperatorNew)
SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorNew);
if (OperatorDelete)
SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorDelete);
return SemaRef.Owned(E);
}
QualType AllocType = AllocTypeInfo->getType();
if (!ArraySize.get()) {
// If no array size was specified, but the new expression was
// instantiated with an array type (e.g., "new T" where T is
// instantiated with "int[4]"), extract the outer bound from the
// array type as our array size. We do this with constant and
// dependently-sized array types.
const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
if (!ArrayT) {
// Do nothing
} else if (const ConstantArrayType *ConsArrayT
= dyn_cast<ConstantArrayType>(ArrayT)) {
ArraySize
= SemaRef.Owned(IntegerLiteral::Create(SemaRef.Context,
ConsArrayT->getSize(),
SemaRef.Context.getSizeType(),
/*FIXME:*/E->getLocStart()));
AllocType = ConsArrayT->getElementType();
} else if (const DependentSizedArrayType *DepArrayT
= dyn_cast<DependentSizedArrayType>(ArrayT)) {
if (DepArrayT->getSizeExpr()) {
ArraySize = SemaRef.Owned(DepArrayT->getSizeExpr());
AllocType = DepArrayT->getElementType();
}
}
}
return getDerived().RebuildCXXNewExpr(E->getLocStart(),
E->isGlobalNew(),
/*FIXME:*/E->getLocStart(),
move_arg(PlacementArgs),
/*FIXME:*/E->getLocStart(),
E->getTypeIdParens(),
AllocType,
AllocTypeInfo,
ArraySize.get(),
/*FIXME:*/E->getLocStart(),
move_arg(ConstructorArgs),
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
ExprResult Operand = getDerived().TransformExpr(E->getArgument());
if (Operand.isInvalid())
return ExprError();
// Transform the delete operator, if known.
FunctionDecl *OperatorDelete = 0;
if (E->getOperatorDelete()) {
OperatorDelete = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getOperatorDelete()));
if (!OperatorDelete)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Operand.get() == E->getArgument() &&
OperatorDelete == E->getOperatorDelete()) {
// Mark any declarations we need as referenced.
// FIXME: instantiation-specific.
if (OperatorDelete)
SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorDelete);
if (!E->getArgument()->isTypeDependent()) {
QualType Destroyed = SemaRef.Context.getBaseElementType(
E->getDestroyedType());
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
SemaRef.MarkDeclarationReferenced(E->getLocStart(),
SemaRef.LookupDestructor(Record));
}
}
return SemaRef.Owned(E);
}
return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
E->isGlobalDelete(),
E->isArrayForm(),
Operand.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
CXXPseudoDestructorExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
ParsedType ObjectTypePtr;
bool MayBePseudoDestructor = false;
Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
E->getOperatorLoc(),
E->isArrow()? tok::arrow : tok::period,
ObjectTypePtr,
MayBePseudoDestructor);
if (Base.isInvalid())
return ExprError();
QualType ObjectType = ObjectTypePtr.get();
NestedNameSpecifier *Qualifier
= getDerived().TransformNestedNameSpecifier(E->getQualifier(),
E->getQualifierRange(),
ObjectType);
if (E->getQualifier() && !Qualifier)
return ExprError();
PseudoDestructorTypeStorage Destroyed;
if (E->getDestroyedTypeInfo()) {
TypeSourceInfo *DestroyedTypeInfo
= getDerived().TransformType(E->getDestroyedTypeInfo(), ObjectType);
if (!DestroyedTypeInfo)
return ExprError();
Destroyed = DestroyedTypeInfo;
} else if (ObjectType->isDependentType()) {
// We aren't likely to be able to resolve the identifier down to a type
// now anyway, so just retain the identifier.
Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
E->getDestroyedTypeLoc());
} else {
// Look for a destructor known with the given name.
CXXScopeSpec SS;
if (Qualifier) {
SS.setScopeRep(Qualifier);
SS.setRange(E->getQualifierRange());
}
ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
*E->getDestroyedTypeIdentifier(),
E->getDestroyedTypeLoc(),
/*Scope=*/0,
SS, ObjectTypePtr,
false);
if (!T)
return ExprError();
Destroyed
= SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
E->getDestroyedTypeLoc());
}
TypeSourceInfo *ScopeTypeInfo = 0;
if (E->getScopeTypeInfo()) {
ScopeTypeInfo = getDerived().TransformType(E->getScopeTypeInfo(),
ObjectType);
if (!ScopeTypeInfo)
return ExprError();
}
return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
E->getOperatorLoc(),
E->isArrow(),
Qualifier,
E->getQualifierRange(),
ScopeTypeInfo,
E->getColonColonLoc(),
E->getTildeLoc(),
Destroyed);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnresolvedLookupExpr(
UnresolvedLookupExpr *Old) {
TemporaryBase Rebase(*this, Old->getNameLoc(), DeclarationName());
LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
Sema::LookupOrdinaryName);
// Transform all the decls.
for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
E = Old->decls_end(); I != E; ++I) {
NamedDecl *InstD = static_cast<NamedDecl*>(
getDerived().TransformDecl(Old->getNameLoc(),
*I));
if (!InstD) {
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
// This can happen because of dependent hiding.
if (isa<UsingShadowDecl>(*I))
continue;
else
return ExprError();
}
// Expand using declarations.
if (isa<UsingDecl>(InstD)) {
UsingDecl *UD = cast<UsingDecl>(InstD);
for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
E = UD->shadow_end(); I != E; ++I)
R.addDecl(*I);
continue;
}
R.addDecl(InstD);
}
// Resolve a kind, but don't do any further analysis. If it's
// ambiguous, the callee needs to deal with it.
R.resolveKind();
// Rebuild the nested-name qualifier, if present.
CXXScopeSpec SS;
NestedNameSpecifier *Qualifier = 0;
if (Old->getQualifier()) {
Qualifier = getDerived().TransformNestedNameSpecifier(Old->getQualifier(),
Old->getQualifierRange());
if (!Qualifier)
return ExprError();
SS.setScopeRep(Qualifier);
SS.setRange(Old->getQualifierRange());
}
if (Old->getNamingClass()) {
CXXRecordDecl *NamingClass
= cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
Old->getNameLoc(),
Old->getNamingClass()));
if (!NamingClass)
return ExprError();
R.setNamingClass(NamingClass);
}
// If we have no template arguments, it's a normal declaration name.
if (!Old->hasExplicitTemplateArgs())
return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
// If we have template arguments, rebuild them, then rebuild the
// templateid expression.
TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
for (unsigned I = 0, N = Old->getNumTemplateArgs(); I != N; ++I) {
TemplateArgumentLoc Loc;
if (getDerived().TransformTemplateArgument(Old->getTemplateArgs()[I], Loc))
return ExprError();
TransArgs.addArgument(Loc);
}
return getDerived().RebuildTemplateIdExpr(SS, R, Old->requiresADL(),
TransArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
if (!T)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getQueriedTypeSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildUnaryTypeTrait(E->getTrait(),
E->getLocStart(),
T,
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
DependentScopeDeclRefExpr *E) {
NestedNameSpecifier *NNS
= getDerived().TransformNestedNameSpecifier(E->getQualifier(),
E->getQualifierRange());
if (!NNS)
return ExprError();
DeclarationNameInfo NameInfo
= getDerived().TransformDeclarationNameInfo(E->getNameInfo());
if (!NameInfo.getName())
return ExprError();
if (!E->hasExplicitTemplateArgs()) {
if (!getDerived().AlwaysRebuild() &&
NNS == E->getQualifier() &&
// Note: it is sufficient to compare the Name component of NameInfo:
// if name has not changed, DNLoc has not changed either.
NameInfo.getName() == E->getDeclName())
return SemaRef.Owned(E);
return getDerived().RebuildDependentScopeDeclRefExpr(NNS,
E->getQualifierRange(),
NameInfo,
/*TemplateArgs*/ 0);
}
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) {
TemplateArgumentLoc Loc;
if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc))
return ExprError();
TransArgs.addArgument(Loc);
}
return getDerived().RebuildDependentScopeDeclRefExpr(NNS,
E->getQualifierRange(),
NameInfo,
&TransArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
// CXXConstructExprs are always implicit, so when we have a
// 1-argument construction we just transform that argument.
if (E->getNumArgs() == 1 ||
(E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1))))
return getDerived().TransformExpr(E->getArg(0));
TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
QualType T = getDerived().TransformType(E->getType());
if (T.isNull())
return ExprError();
CXXConstructorDecl *Constructor
= cast_or_null<CXXConstructorDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getConstructor()));
if (!Constructor)
return ExprError();
bool ArgumentChanged = false;
ASTOwningVector<Expr*> Args(SemaRef);
for (CXXConstructExpr::arg_iterator Arg = E->arg_begin(),
ArgEnd = E->arg_end();
Arg != ArgEnd; ++Arg) {
if (getDerived().DropCallArgument(*Arg)) {
ArgumentChanged = true;
break;
}
ExprResult TransArg = getDerived().TransformExpr(*Arg);
if (TransArg.isInvalid())
return ExprError();
ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg;
Args.push_back(TransArg.get());
}
if (!getDerived().AlwaysRebuild() &&
T == E->getType() &&
Constructor == E->getConstructor() &&
!ArgumentChanged) {
// Mark the constructor as referenced.
// FIXME: Instantiation-specific
SemaRef.MarkDeclarationReferenced(E->getLocStart(), Constructor);
return SemaRef.Owned(E);
}
return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
Constructor, E->isElidable(),
move_arg(Args),
E->requiresZeroInitialization(),
E->getConstructionKind(),
E->getParenRange());
}
/// \brief Transform a C++ temporary-binding expression.
///
/// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
/// transform the subexpression and return that.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
return getDerived().TransformExpr(E->getSubExpr());
}
/// \brief Transform a C++ expression that contains temporaries that should
/// be destroyed after the expression is evaluated.
///
/// Since CXXExprWithTemporaries nodes are implicitly generated, we
/// just transform the subexpression and return that.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXExprWithTemporaries(
CXXExprWithTemporaries *E) {
return getDerived().TransformExpr(E->getSubExpr());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
CXXTemporaryObjectExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
if (!T)
return ExprError();
CXXConstructorDecl *Constructor
= cast_or_null<CXXConstructorDecl>(
getDerived().TransformDecl(E->getLocStart(),
E->getConstructor()));
if (!Constructor)
return ExprError();
bool ArgumentChanged = false;
ASTOwningVector<Expr*> Args(SemaRef);
Args.reserve(E->getNumArgs());
for (CXXTemporaryObjectExpr::arg_iterator Arg = E->arg_begin(),
ArgEnd = E->arg_end();
Arg != ArgEnd; ++Arg) {
if (getDerived().DropCallArgument(*Arg)) {
ArgumentChanged = true;
break;
}
ExprResult TransArg = getDerived().TransformExpr(*Arg);
if (TransArg.isInvalid())
return ExprError();
ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg;
Args.push_back((Expr *)TransArg.release());
}
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo() &&
Constructor == E->getConstructor() &&
!ArgumentChanged) {
// FIXME: Instantiation-specific
SemaRef.MarkDeclarationReferenced(E->getLocStart(), Constructor);
return SemaRef.MaybeBindToTemporary(E);
}
return getDerived().RebuildCXXTemporaryObjectExpr(T,
/*FIXME:*/T->getTypeLoc().getEndLoc(),
move_arg(Args),
E->getLocEnd());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
CXXUnresolvedConstructExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
if (!T)
return ExprError();
bool ArgumentChanged = false;
ASTOwningVector<Expr*> Args(SemaRef);
for (CXXUnresolvedConstructExpr::arg_iterator Arg = E->arg_begin(),
ArgEnd = E->arg_end();
Arg != ArgEnd; ++Arg) {
ExprResult TransArg = getDerived().TransformExpr(*Arg);
if (TransArg.isInvalid())
return ExprError();
ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg;
Args.push_back(TransArg.get());
}
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo() &&
!ArgumentChanged)
return SemaRef.Owned(E);
// FIXME: we're faking the locations of the commas
return getDerived().RebuildCXXUnresolvedConstructExpr(T,
E->getLParenLoc(),
move_arg(Args),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
CXXDependentScopeMemberExpr *E) {
// Transform the base of the expression.
ExprResult Base((Expr*) 0);
Expr *OldBase;
QualType BaseType;
QualType ObjectType;
if (!E->isImplicitAccess()) {
OldBase = E->getBase();
Base = getDerived().TransformExpr(OldBase);
if (Base.isInvalid())
return ExprError();
// Start the member reference and compute the object's type.
ParsedType ObjectTy;
bool MayBePseudoDestructor = false;
Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
E->getOperatorLoc(),
E->isArrow()? tok::arrow : tok::period,
ObjectTy,
MayBePseudoDestructor);
if (Base.isInvalid())
return ExprError();
ObjectType = ObjectTy.get();
BaseType = ((Expr*) Base.get())->getType();
} else {
OldBase = 0;
BaseType = getDerived().TransformType(E->getBaseType());
ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
}
// Transform the first part of the nested-name-specifier that qualifies
// the member name.
NamedDecl *FirstQualifierInScope
= getDerived().TransformFirstQualifierInScope(
E->getFirstQualifierFoundInScope(),
E->getQualifierRange().getBegin());
NestedNameSpecifier *Qualifier = 0;
if (E->getQualifier()) {
Qualifier = getDerived().TransformNestedNameSpecifier(E->getQualifier(),
E->getQualifierRange(),
ObjectType,
FirstQualifierInScope);
if (!Qualifier)
return ExprError();
}
DeclarationNameInfo NameInfo
= getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo(),
ObjectType);
if (!NameInfo.getName())
return ExprError();
if (!E->hasExplicitTemplateArgs()) {
// This is a reference to a member without an explicitly-specified
// template argument list. Optimize for this common case.
if (!getDerived().AlwaysRebuild() &&
Base.get() == OldBase &&
BaseType == E->getBaseType() &&
Qualifier == E->getQualifier() &&
NameInfo.getName() == E->getMember() &&
FirstQualifierInScope == E->getFirstQualifierFoundInScope())
return SemaRef.Owned(E);
return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
BaseType,
E->isArrow(),
E->getOperatorLoc(),
Qualifier,
E->getQualifierRange(),
FirstQualifierInScope,
NameInfo,
/*TemplateArgs*/ 0);
}
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) {
TemplateArgumentLoc Loc;
if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc))
return ExprError();
TransArgs.addArgument(Loc);
}
return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
BaseType,
E->isArrow(),
E->getOperatorLoc(),
Qualifier,
E->getQualifierRange(),
FirstQualifierInScope,
NameInfo,
&TransArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
// Transform the base of the expression.
ExprResult Base((Expr*) 0);
QualType BaseType;
if (!Old->isImplicitAccess()) {
Base = getDerived().TransformExpr(Old->getBase());
if (Base.isInvalid())
return ExprError();
BaseType = ((Expr*) Base.get())->getType();
} else {
BaseType = getDerived().TransformType(Old->getBaseType());
}
NestedNameSpecifier *Qualifier = 0;
if (Old->getQualifier()) {
Qualifier
= getDerived().TransformNestedNameSpecifier(Old->getQualifier(),
Old->getQualifierRange());
if (Qualifier == 0)
return ExprError();
}
LookupResult R(SemaRef, Old->getMemberNameInfo(),
Sema::LookupOrdinaryName);
// Transform all the decls.
for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
E = Old->decls_end(); I != E; ++I) {
NamedDecl *InstD = static_cast<NamedDecl*>(
getDerived().TransformDecl(Old->getMemberLoc(),
*I));
if (!InstD) {
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
// This can happen because of dependent hiding.
if (isa<UsingShadowDecl>(*I))
continue;
else
return ExprError();
}
// Expand using declarations.
if (isa<UsingDecl>(InstD)) {
UsingDecl *UD = cast<UsingDecl>(InstD);
for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
E = UD->shadow_end(); I != E; ++I)
R.addDecl(*I);
continue;
}
R.addDecl(InstD);
}
R.resolveKind();
// Determine the naming class.
if (Old->getNamingClass()) {
CXXRecordDecl *NamingClass
= cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
Old->getMemberLoc(),
Old->getNamingClass()));
if (!NamingClass)
return ExprError();
R.setNamingClass(NamingClass);
}
TemplateArgumentListInfo TransArgs;
if (Old->hasExplicitTemplateArgs()) {
TransArgs.setLAngleLoc(Old->getLAngleLoc());
TransArgs.setRAngleLoc(Old->getRAngleLoc());
for (unsigned I = 0, N = Old->getNumTemplateArgs(); I != N; ++I) {
TemplateArgumentLoc Loc;
if (getDerived().TransformTemplateArgument(Old->getTemplateArgs()[I],
Loc))
return ExprError();
TransArgs.addArgument(Loc);
}
}
// FIXME: to do this check properly, we will need to preserve the
// first-qualifier-in-scope here, just in case we had a dependent
// base (and therefore couldn't do the check) and a
// nested-name-qualifier (and therefore could do the lookup).
NamedDecl *FirstQualifierInScope = 0;
return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
BaseType,
Old->getOperatorLoc(),
Old->isArrow(),
Qualifier,
Old->getQualifierRange(),
FirstQualifierInScope,
R,
(Old->hasExplicitTemplateArgs()
? &TransArgs : 0));
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
return SemaRef.Owned(E);
return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
TypeSourceInfo *EncodedTypeInfo
= getDerived().TransformType(E->getEncodedTypeSourceInfo());
if (!EncodedTypeInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
EncodedTypeInfo == E->getEncodedTypeSourceInfo())
return SemaRef.Owned(E);
return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
EncodedTypeInfo,
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
// Transform arguments.
bool ArgChanged = false;
ASTOwningVector<Expr*> Args(SemaRef);
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
ExprResult Arg = getDerived().TransformExpr(E->getArg(I));
if (Arg.isInvalid())
return ExprError();
ArgChanged = ArgChanged || Arg.get() != E->getArg(I);
Args.push_back(Arg.get());
}
if (E->getReceiverKind() == ObjCMessageExpr::Class) {
// Class message: transform the receiver type.
TypeSourceInfo *ReceiverTypeInfo
= getDerived().TransformType(E->getClassReceiverTypeInfo());
if (!ReceiverTypeInfo)
return ExprError();
// If nothing changed, just retain the existing message send.
if (!getDerived().AlwaysRebuild() &&
ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
return SemaRef.Owned(E);
// Build a new class message send.
return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
E->getSelector(),
E->getMethodDecl(),
E->getLeftLoc(),
move_arg(Args),
E->getRightLoc());
}
// Instance message: transform the receiver
assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
"Only class and instance messages may be instantiated");
ExprResult Receiver
= getDerived().TransformExpr(E->getInstanceReceiver());
if (Receiver.isInvalid())
return ExprError();
// If nothing changed, just retain the existing message send.
if (!getDerived().AlwaysRebuild() &&
Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
return SemaRef.Owned(E);
// Build a new instance message send.
return getDerived().RebuildObjCMessageExpr(Receiver.get(),
E->getSelector(),
E->getMethodDecl(),
E->getLeftLoc(),
move_arg(Args),
E->getRightLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
return SemaRef.Owned(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// We don't need to transform the ivar; it will never change.
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
E->getLocation(),
E->isArrow(), E->isFreeIvar());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
// 'super' never changes. Property never changes. Just retain the existing
// expression.
if (E->isSuperReceiver())
return SemaRef.Owned(E);
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// We don't need to transform the property; it will never change.
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
return getDerived().RebuildObjCPropertyRefExpr(Base.get(), E->getProperty(),
E->getLocation());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCImplicitSetterGetterRefExpr(
ObjCImplicitSetterGetterRefExpr *E) {
// If this implicit setter/getter refers to super, it cannot have any
// dependent parts. Just retain the existing declaration.
if (E->isSuperReceiver())
return SemaRef.Owned(E);
// If this implicit setter/getter refers to class methods, it cannot have any
// dependent parts. Just retain the existing declaration.
if (E->getInterfaceDecl())
return SemaRef.Owned(E);
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// We don't need to transform the getters/setters; they will never change.
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
return getDerived().RebuildObjCImplicitSetterGetterRefExpr(
E->getGetterMethod(),
E->getType(),
E->getSetterMethod(),
E->getLocation(),
Base.get(),
E->getSuperLocation(),
E->getSuperType(),
E->isSuperReceiver());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return SemaRef.Owned(E);
return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
E->isArrow());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
bool ArgumentChanged = false;
ASTOwningVector<Expr*> SubExprs(SemaRef);
for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I) {
ExprResult SubExpr = getDerived().TransformExpr(E->getExpr(I));
if (SubExpr.isInvalid())
return ExprError();
ArgumentChanged = ArgumentChanged || SubExpr.get() != E->getExpr(I);
SubExprs.push_back(SubExpr.get());
}
if (!getDerived().AlwaysRebuild() &&
!ArgumentChanged)
return SemaRef.Owned(E);
return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
move_arg(SubExprs),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
SourceLocation CaretLoc(E->getExprLoc());
SemaRef.ActOnBlockStart(CaretLoc, /*Scope=*/0);
BlockScopeInfo *CurBlock = SemaRef.getCurBlock();
CurBlock->TheDecl->setIsVariadic(E->getBlockDecl()->isVariadic());
llvm::SmallVector<ParmVarDecl*, 4> Params;
llvm::SmallVector<QualType, 4> ParamTypes;
// Parameter substitution.
const BlockDecl *BD = E->getBlockDecl();
for (BlockDecl::param_const_iterator P = BD->param_begin(),
EN = BD->param_end(); P != EN; ++P) {
ParmVarDecl *OldParm = (*P);
ParmVarDecl *NewParm = getDerived().TransformFunctionTypeParam(OldParm);
QualType NewType = NewParm->getType();
Params.push_back(NewParm);
ParamTypes.push_back(NewParm->getType());
}
const FunctionType *BExprFunctionType = E->getFunctionType();
QualType BExprResultType = BExprFunctionType->getResultType();
if (!BExprResultType.isNull()) {
if (!BExprResultType->isDependentType())
CurBlock->ReturnType = BExprResultType;
else if (BExprResultType != SemaRef.Context.DependentTy)
CurBlock->ReturnType = getDerived().TransformType(BExprResultType);
}
// Transform the body
StmtResult Body = getDerived().TransformStmt(E->getBody());
if (Body.isInvalid())
return ExprError();
// Set the parameters on the block decl.
if (!Params.empty())
CurBlock->TheDecl->setParams(Params.data(), Params.size());
QualType FunctionType = getDerived().RebuildFunctionProtoType(
CurBlock->ReturnType,
ParamTypes.data(),
ParamTypes.size(),
BD->isVariadic(),
0,
BExprFunctionType->getExtInfo());
CurBlock->FunctionType = FunctionType;
return SemaRef.ActOnBlockStmtExpr(CaretLoc, Body.get(), /*Scope=*/0);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBlockDeclRefExpr(BlockDeclRefExpr *E) {
NestedNameSpecifier *Qualifier = 0;
ValueDecl *ND
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
E->getDecl()));
if (!ND)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
ND == E->getDecl()) {
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
SemaRef.MarkDeclarationReferenced(E->getLocation(), ND);
return SemaRef.Owned(E);
}
DeclarationNameInfo NameInfo(E->getDecl()->getDeclName(), E->getLocation());
return getDerived().RebuildDeclRefExpr(Qualifier, SourceLocation(),
ND, NameInfo, 0);
}
//===----------------------------------------------------------------------===//
// Type reconstruction
//===----------------------------------------------------------------------===//
template<typename Derived>
QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
SourceLocation Star) {
return SemaRef.BuildPointerType(PointeeType, Star,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
SourceLocation Star) {
return SemaRef.BuildBlockPointerType(PointeeType, Star,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
bool WrittenAsLValue,
SourceLocation Sigil) {
return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
Sigil, getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
QualType ClassType,
SourceLocation Sigil) {
return SemaRef.BuildMemberPointerType(PointeeType, ClassType,
Sigil, getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
const llvm::APInt *Size,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
if (SizeExpr || !Size)
return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
IndexTypeQuals, BracketsRange,
getDerived().getBaseEntity());
QualType Types[] = {
SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
};
const unsigned NumTypes = sizeof(Types) / sizeof(QualType);
QualType SizeType;
for (unsigned I = 0; I != NumTypes; ++I)
if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
SizeType = Types[I];
break;
}
IntegerLiteral ArraySize(SemaRef.Context, *Size, SizeType,
/*FIXME*/BracketsRange.getBegin());
return SemaRef.BuildArrayType(ElementType, SizeMod, &ArraySize,
IndexTypeQuals, BracketsRange,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
const llvm::APInt &Size,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, 0,
IndexTypeQuals, BracketsRange);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, 0, 0,
IndexTypeQuals, BracketsRange);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
SizeExpr,
IndexTypeQuals, BracketsRange);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
ArrayType::ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
SizeExpr,
IndexTypeQuals, BracketsRange);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
unsigned NumElements,
VectorType::AltiVecSpecific AltiVecSpec) {
// FIXME: semantic checking!
return SemaRef.Context.getVectorType(ElementType, NumElements, AltiVecSpec);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
unsigned NumElements,
SourceLocation AttributeLoc) {
llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
NumElements, true);
IntegerLiteral *VectorSize
= IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
AttributeLoc);
return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
Expr *SizeExpr,
SourceLocation AttributeLoc) {
return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildFunctionProtoType(QualType T,
QualType *ParamTypes,
unsigned NumParamTypes,
bool Variadic,
unsigned Quals,
const FunctionType::ExtInfo &Info) {
return SemaRef.BuildFunctionType(T, ParamTypes, NumParamTypes, Variadic,
Quals,
getDerived().getBaseLocation(),
getDerived().getBaseEntity(),
Info);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
return SemaRef.Context.getFunctionNoProtoType(T);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
assert(D && "no decl found");
if (D->isInvalidDecl()) return QualType();
// FIXME: Doesn't account for ObjCInterfaceDecl!
TypeDecl *Ty;
if (isa<UsingDecl>(D)) {
UsingDecl *Using = cast<UsingDecl>(D);
assert(Using->isTypeName() &&
"UnresolvedUsingTypenameDecl transformed to non-typename using");
// A valid resolved using typename decl points to exactly one type decl.
assert(++Using->shadow_begin() == Using->shadow_end());
Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
} else {
assert(isa<UnresolvedUsingTypenameDecl>(D) &&
"UnresolvedUsingTypenameDecl transformed to non-using decl");
Ty = cast<UnresolvedUsingTypenameDecl>(D);
}
return SemaRef.Context.getTypeDeclType(Ty);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
SourceLocation Loc) {
return SemaRef.BuildTypeofExprType(E, Loc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
return SemaRef.Context.getTypeOfType(Underlying);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
SourceLocation Loc) {
return SemaRef.BuildDecltypeType(E, Loc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
TemplateName Template,
SourceLocation TemplateNameLoc,
const TemplateArgumentListInfo &TemplateArgs) {
return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
}
template<typename Derived>
NestedNameSpecifier *
TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
SourceRange Range,
IdentifierInfo &II,
QualType ObjectType,
NamedDecl *FirstQualifierInScope) {
CXXScopeSpec SS;
// FIXME: The source location information is all wrong.
SS.setRange(Range);
SS.setScopeRep(Prefix);
return static_cast<NestedNameSpecifier *>(
SemaRef.BuildCXXNestedNameSpecifier(0, SS, Range.getEnd(),
Range.getEnd(), II,
ObjectType,
FirstQualifierInScope,
false, false));
}
template<typename Derived>
NestedNameSpecifier *
TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
SourceRange Range,
NamespaceDecl *NS) {
return NestedNameSpecifier::Create(SemaRef.Context, Prefix, NS);
}
template<typename Derived>
NestedNameSpecifier *
TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
SourceRange Range,
bool TemplateKW,
QualType T) {
if (T->isDependentType() || T->isRecordType() ||
(SemaRef.getLangOptions().CPlusPlus0x && T->isEnumeralType())) {
assert(!T.hasLocalQualifiers() && "Can't get cv-qualifiers here");
return NestedNameSpecifier::Create(SemaRef.Context, Prefix, TemplateKW,
T.getTypePtr());
}
SemaRef.Diag(Range.getBegin(), diag::err_nested_name_spec_non_tag) << T;
return 0;
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier,
bool TemplateKW,
TemplateDecl *Template) {
return SemaRef.Context.getQualifiedTemplateName(Qualifier, TemplateKW,
Template);
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
const IdentifierInfo &II,
QualType ObjectType) {
CXXScopeSpec SS;
SS.setRange(QualifierRange);
SS.setScopeRep(Qualifier);
UnqualifiedId Name;
Name.setIdentifier(&II, /*FIXME:*/getDerived().getBaseLocation());
Sema::TemplateTy Template;
getSema().ActOnDependentTemplateName(/*Scope=*/0,
/*FIXME:*/getDerived().getBaseLocation(),
SS,
Name,
ParsedType::make(ObjectType),
/*EnteringContext=*/false,
Template);
return Template.template getAsVal<TemplateName>();
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier,
OverloadedOperatorKind Operator,
QualType ObjectType) {
CXXScopeSpec SS;
SS.setRange(SourceRange(getDerived().getBaseLocation()));
SS.setScopeRep(Qualifier);
UnqualifiedId Name;
SourceLocation SymbolLocations[3]; // FIXME: Bogus location information.
Name.setOperatorFunctionId(/*FIXME:*/getDerived().getBaseLocation(),
Operator, SymbolLocations);
Sema::TemplateTy Template;
getSema().ActOnDependentTemplateName(/*Scope=*/0,
/*FIXME:*/getDerived().getBaseLocation(),
SS,
Name,
ParsedType::make(ObjectType),
/*EnteringContext=*/false,
Template);
return Template.template getAsVal<TemplateName>();
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
SourceLocation OpLoc,
Expr *OrigCallee,
Expr *First,
Expr *Second) {
Expr *Callee = OrigCallee->IgnoreParenCasts();
bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
// Determine whether this should be a builtin operation.
if (Op == OO_Subscript) {
if (!First->getType()->isOverloadableType() &&
!Second->getType()->isOverloadableType())
return getSema().CreateBuiltinArraySubscriptExpr(First,
Callee->getLocStart(),
Second, OpLoc);
} else if (Op == OO_Arrow) {
// -> is never a builtin operation.
return SemaRef.BuildOverloadedArrowExpr(0, First, OpLoc);
} else if (Second == 0 || isPostIncDec) {
if (!First->getType()->isOverloadableType()) {
// The argument is not of overloadable type, so try to create a
// built-in unary operation.
UnaryOperatorKind Opc
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
}
} else {
if (!First->getType()->isOverloadableType() &&
!Second->getType()->isOverloadableType()) {
// Neither of the arguments is an overloadable type, so try to
// create a built-in binary operation.
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
ExprResult Result
= SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
if (Result.isInvalid())
return ExprError();
return move(Result);
}
}
// Compute the transformed set of functions (and function templates) to be
// used during overload resolution.
UnresolvedSet<16> Functions;
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
assert(ULE->requiresADL());
// FIXME: Do we have to check
// IsAcceptableNonMemberOperatorCandidate for each of these?
Functions.append(ULE->decls_begin(), ULE->decls_end());
} else {
Functions.addDecl(cast<DeclRefExpr>(Callee)->getDecl());
}
// Add any functions found via argument-dependent lookup.
Expr *Args[2] = { First, Second };
unsigned NumArgs = 1 + (Second != 0);
// Create the overloaded operator invocation for unary operators.
if (NumArgs == 1 || isPostIncDec) {
UnaryOperatorKind Opc
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First);
}
if (Op == OO_Subscript)
return SemaRef.CreateOverloadedArraySubscriptExpr(Callee->getLocStart(),
OpLoc,
First,
Second);
// Create the overloaded operator invocation for binary operators.
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
ExprResult Result
= SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
if (Result.isInvalid())
return ExprError();
return move(Result);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
SourceLocation OperatorLoc,
bool isArrow,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage Destroyed) {
CXXScopeSpec SS;
if (Qualifier) {
SS.setRange(QualifierRange);
SS.setScopeRep(Qualifier);
}
QualType BaseType = Base->getType();
if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
(!isArrow && !BaseType->getAs<RecordType>()) ||
(isArrow && BaseType->getAs<PointerType>() &&
!BaseType->getAs<PointerType>()->getPointeeType()
->template getAs<RecordType>())){
// This pseudo-destructor expression is still a pseudo-destructor.
return SemaRef.BuildPseudoDestructorExpr(Base, OperatorLoc,
isArrow? tok::arrow : tok::period,
SS, ScopeType, CCLoc, TildeLoc,
Destroyed,
/*FIXME?*/true);
}
TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
SemaRef.Context.getCanonicalType(DestroyedType->getType())));
DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
NameInfo.setNamedTypeInfo(DestroyedType);
// FIXME: the ScopeType should be tacked onto SS.
return getSema().BuildMemberReferenceExpr(Base, BaseType,
OperatorLoc, isArrow,
SS, /*FIXME: FirstQualifier*/ 0,
NameInfo,
/*TemplateArgs*/ 0);
}
} // end namespace clang
#endif // LLVM_CLANG_SEMA_TREETRANSFORM_H