Make more AST nodes and semantic checkers dependent-expression-aware.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@65529 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sebastian Redl 2009-02-26 14:39:58 +00:00
Родитель b558422a49
Коммит 2850784bda
6 изменённых файлов: 216 добавлений и 102 удалений

Просмотреть файл

@ -680,8 +680,12 @@ public:
SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
QualType resultType, SourceLocation op,
SourceLocation rp) :
Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
isType(istype), OpLoc(op), RParenLoc(rp) {
Expr(SizeOfAlignOfExprClass, resultType,
false, // Never type-dependent.
// Value-dependent if the argument is type-dependent.
(istype ? QualType::getFromOpaquePtr(argument)->isDependentType()
: static_cast<Expr*>(argument)->isTypeDependent())),
isSizeof(issizeof), isType(istype), OpLoc(op), RParenLoc(rp) {
if (isType)
Argument.Ty = argument;
else
@ -742,7 +746,10 @@ class ArraySubscriptExpr : public Expr {
public:
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
SourceLocation rbracketloc)
: Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
: Expr(ArraySubscriptExprClass, t,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent()),
RBracketLoc(rbracketloc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}

Просмотреть файл

@ -227,12 +227,18 @@ private:
public:
CXXTypeidExpr(bool isTypeOp, void *op, QualType Ty, const SourceRange r) :
Expr(CXXTypeidExprClass, Ty), isTypeOp(isTypeOp), Range(r) {
Expr(CXXTypeidExprClass, Ty,
// typeid is never type-dependent (C++ [temp.dep.expr]p4)
false,
// typeid is value-dependent if the type or expression are dependent
(isTypeOp ? QualType::getFromOpaquePtr(op)->isDependentType()
: static_cast<Expr*>(op)->isValueDependent())),
isTypeOp(isTypeOp), Range(r) {
if (isTypeOp)
Operand.Ty = op;
else
// op was an Expr*, so cast it back to that to be safe
Operand.Ex = static_cast<Stmt*>(op);
Operand.Ex = static_cast<Expr*>(op);
}
bool isTypeOperand() const { return isTypeOp; }
@ -277,7 +283,11 @@ class CXXThisExpr : public Expr {
public:
CXXThisExpr(SourceLocation L, QualType Type)
: Expr(CXXThisExprClass, Type), Loc(L) { }
: Expr(CXXThisExprClass, Type,
// 'this' is type-dependent if the class type of the enclosing
// member function is dependent (C++ [temp.dep.expr]p2)
Type->isDependentType(), Type->isDependentType()),
Loc(L) { }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
@ -306,7 +316,7 @@ public:
// exepression. The l is the location of the throw keyword. expr
// can by null, if the optional expression to throw isn't present.
CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
Expr(CXXThrowExprClass, Ty), Op(expr), ThrowLoc(l) {}
Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
@ -578,7 +588,8 @@ class CXXNewExpr : public Expr {
Stmt **subExprs, FunctionDecl *operatorNew,
FunctionDecl *operatorDelete, CXXConstructorDecl *constructor,
SourceLocation startLoc, SourceLocation endLoc)
: Expr(CXXNewExprClass, ty), GlobalNew(globalNew), ParenTypeId(parenTypeId),
: Expr(CXXNewExprClass, ty, ty->isDependentType(), ty->isDependentType()),
GlobalNew(globalNew), ParenTypeId(parenTypeId),
Initializer(initializer), Array(array), NumPlacementArgs(numPlaceArgs),
NumConstructorArgs(numConsArgs), SubExprs(subExprs),
OperatorNew(operatorNew), OperatorDelete(operatorDelete),
@ -698,7 +709,7 @@ class CXXDeleteExpr : public Expr {
public:
CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
: Expr(CXXDeleteExprClass, ty), GlobalDelete(globalDelete),
: Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
Loc(loc) { }

Просмотреть файл

@ -95,7 +95,8 @@ CXXNewExpr::CXXNewExpr(bool globalNew, FunctionDecl *operatorNew,
Expr **constructorArgs, unsigned numConsArgs,
FunctionDecl *operatorDelete, QualType ty,
SourceLocation startLoc, SourceLocation endLoc)
: Expr(CXXNewExprClass, ty), GlobalNew(globalNew), ParenTypeId(parenTypeId),
: Expr(CXXNewExprClass, ty, ty->isDependentType(), ty->isDependentType()),
GlobalNew(globalNew), ParenTypeId(parenTypeId),
Initializer(initializer), Array(arraySize), NumPlacementArgs(numPlaceArgs),
NumConstructorArgs(numConsArgs), OperatorNew(operatorNew),
OperatorDelete(operatorDelete), Constructor(constructor),

Просмотреть файл

@ -1159,10 +1159,13 @@ Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
/// The UsualUnaryConversions() function is *not* called by this routine.
/// See C99 6.3.2.1p[2-4] for more details.
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
SourceLocation OpLoc,
const SourceRange &ExprRange,
bool isSizeof) {
if (exprType->isDependentType())
return false;
// C99 6.5.3.4p1:
if (isa<FunctionType>(exprType)) {
// alignof(function) is allowed.
@ -1186,11 +1189,15 @@ bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
const SourceRange &ExprRange) {
E = E->IgnoreParens();
// alignof decl is always ok.
if (isa<DeclRefExpr>(E))
return false;
// Cannot know anything else if the expression is dependent.
if (E->isTypeDependent())
return false;
if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
if (FD->isBitField()) {
@ -1252,6 +1259,9 @@ Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
}
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
if (V->isTypeDependent())
return Context.DependentTy;
DefaultFunctionArrayConversion(V);
// These operators return the element type of a complex type.
@ -1504,7 +1514,11 @@ Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
// and index from the expression types.
Expr *BaseExpr, *IndexExpr;
QualType ResultType;
if (const PointerType *PTy = LHSTy->getAsPointerType()) {
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = Context.DependentTy;
} else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
// FIXME: need to deal with const...
@ -1526,7 +1540,7 @@ Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
}
// C99 6.5.2.1p1
if (!IndexExpr->getType()->isIntegerType())
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
return ExprError(Diag(IndexExpr->getLocStart(),
diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
@ -1534,7 +1548,7 @@ Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
// the following check catches trying to index a pointer to a function (e.g.
// void (*)(int)) and pointers to incomplete types. Functions are not
// objects in C99.
if (!ResultType->isObjectType())
if (!ResultType->isObjectType() && !ResultType->isDependentType())
return ExprError(Diag(BaseExpr->getLocStart(),
diag::err_typecheck_subscript_not_object)
<< BaseExpr->getType() << BaseExpr->getSourceRange());
@ -2306,8 +2320,8 @@ Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
LParenLoc, RParenLoc));
}
/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lex = cond.
/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lhs = cond.
/// C99 6.5.15
QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
SourceLocation QuestionLoc) {
@ -3442,6 +3456,9 @@ QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
bool isInc) {
if (Op->isTypeDependent())
return Context.DependentTy;
QualType ResType = Op->getType();
assert(!ResType.isNull() && "no type for increment/decrement expression");
@ -3669,6 +3686,9 @@ QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
}
QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
if (Op->isTypeDependent())
return Context.DependentTy;
UsualUnaryConversions(Op);
QualType Ty = Op->getType();
@ -4120,6 +4140,8 @@ Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
case UnaryOperator::Minus:
UsualUnaryConversions(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
if (resultType->isArithmeticType()) // C99 6.5.3.3p1
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
@ -4135,6 +4157,8 @@ Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
case UnaryOperator::Not: // bitwise complement
UsualUnaryConversions(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
if (resultType->isComplexType() || resultType->isComplexIntegerType())
// C99 does not support '~' for complex conjugation.
@ -4148,6 +4172,8 @@ Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
DefaultFunctionArrayConversion(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
if (!resultType->isScalarType()) // C99 6.5.3.3p1
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
@ -4231,10 +4257,12 @@ Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
QualType ArgTy = QualType::getFromOpaquePtr(argty);
assert(!ArgTy.isNull() && "Missing type argument!");
bool Dependent = ArgTy->isDependentType();
// We must have at least one component that refers to the type, and the first
// one is known to be a field designator. Verify that the ArgTy represents
// a struct/union/class.
if (!ArgTy->isRecordType())
if (!Dependent && !ArgTy->isRecordType())
return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
// Otherwise, create a compound literal expression as the base, and
@ -4251,51 +4279,57 @@ Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
for (unsigned i = 0; i != NumComponents; ++i) {
const OffsetOfComponent &OC = CompPtr[i];
if (OC.isBrackets) {
// Offset of an array sub-field. TODO: Should we allow vector elements?
const ArrayType *AT = Context.getAsArrayType(Res->getType());
if (!AT) {
Res->Destroy(Context);
return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
if (!Dependent) {
// FIXME: Dependent case loses a lot of information here. And probably
// leaks like a sieve.
for (unsigned i = 0; i != NumComponents; ++i) {
const OffsetOfComponent &OC = CompPtr[i];
if (OC.isBrackets) {
// Offset of an array sub-field. TODO: Should we allow vector elements?
const ArrayType *AT = Context.getAsArrayType(Res->getType());
if (!AT) {
Res->Destroy(Context);
return Diag(OC.LocEnd, diag::err_offsetof_array_type)
<< Res->getType();
}
// FIXME: C++: Verify that operator[] isn't overloaded.
// C99 6.5.2.1p1
Expr *Idx = static_cast<Expr*>(OC.U.E);
if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
<< Idx->getSourceRange();
Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
OC.LocEnd);
continue;
}
// FIXME: C++: Verify that operator[] isn't overloaded.
const RecordType *RC = Res->getType()->getAsRecordType();
if (!RC) {
Res->Destroy(Context);
return Diag(OC.LocEnd, diag::err_offsetof_record_type)
<< Res->getType();
}
// C99 6.5.2.1p1
Expr *Idx = static_cast<Expr*>(OC.U.E);
if (!Idx->getType()->isIntegerType())
return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
<< Idx->getSourceRange();
// Get the decl corresponding to this.
RecordDecl *RD = RC->getDecl();
FieldDecl *MemberDecl
= dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
LookupMemberName)
.getAsDecl());
if (!MemberDecl)
return Diag(BuiltinLoc, diag::err_typecheck_no_member)
<< OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
OC.LocEnd);
continue;
}
const RecordType *RC = Res->getType()->getAsRecordType();
if (!RC) {
Res->Destroy(Context);
return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
}
// Get the decl corresponding to this.
RecordDecl *RD = RC->getDecl();
FieldDecl *MemberDecl
= dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
LookupMemberName)
.getAsDecl());
if (!MemberDecl)
return Diag(BuiltinLoc, diag::err_typecheck_no_member)
<< OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
// FIXME: C++: Verify that MemberDecl isn't a static field.
// FIXME: Verify that MemberDecl isn't a bitfield.
// MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
// matter here.
Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
// FIXME: C++: Verify that MemberDecl isn't a static field.
// FIXME: Verify that MemberDecl isn't a bitfield.
// MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
// matter here.
Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
MemberDecl->getType().getNonReferenceType());
}
}
return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
@ -4324,16 +4358,21 @@ Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
// The conditional expression is required to be a constant expression.
llvm::APSInt condEval(32);
SourceLocation ExpLoc;
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
<< CondExpr->getSourceRange();
QualType resType;
if (CondExpr->isValueDependent()) {
resType = Context.DependentTy;
} else {
// The conditional expression is required to be a constant expression.
llvm::APSInt condEval(32);
SourceLocation ExpLoc;
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
<< CondExpr->getSourceRange();
// If the condition is > zero, then the AST type is the same as the LSHExpr.
resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
}
// If the condition is > zero, then the AST type is the same as the LSHExpr.
QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
RHSExpr->getType();
return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
resType, RPLoc);
}

Просмотреть файл

@ -134,6 +134,8 @@ Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
TyBeginLoc, Exprs[0], RParenLoc);
}
// FIXME: What AST node to create when the type is dependent?
if (const RecordType *RT = Ty->getAsRecordType()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
@ -220,14 +222,16 @@ Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
if (CheckAllocatedType(AllocType, D))
return true;
QualType ResultType = Context.getPointerType(AllocType);
QualType ResultType = AllocType->isDependentType()
? Context.DependentTy
: Context.getPointerType(AllocType);
// That every array dimension except the first is constant was already
// checked by the type check above.
// C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
// or enumeration type with a non-negative value."
if (ArraySize) {
if (ArraySize && !ArraySize->isTypeDependent()) {
QualType SizeType = ArraySize->getType();
if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
return Diag(ArraySize->getSourceRange().getBegin(),
@ -236,20 +240,24 @@ Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
// Let's see if this is a constant < 0. If so, we reject it out of hand.
// We don't care about special rules, so we tell the machinery it's not
// evaluated - it gives us a result in more cases.
llvm::APSInt Value;
if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
if (Value < llvm::APSInt(
llvm::APInt::getNullValue(Value.getBitWidth()), false))
return Diag(ArraySize->getSourceRange().getBegin(),
diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange();
if (!ArraySize->isValueDependent()) {
llvm::APSInt Value;
if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
if (Value < llvm::APSInt(
llvm::APInt::getNullValue(Value.getBitWidth()), false))
return Diag(ArraySize->getSourceRange().getBegin(),
diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange();
}
}
}
FunctionDecl *OperatorNew = 0;
FunctionDecl *OperatorDelete = 0;
Expr **PlaceArgs = (Expr**)PlacementArgs;
if (FindAllocationFunctions(StartLoc,
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
FindAllocationFunctions(StartLoc,
SourceRange(PlacementLParen, PlacementRParen),
UseGlobal, AllocType, ArraySize, PlaceArgs,
NumPlaceArgs, OperatorNew, OperatorDelete))
@ -275,8 +283,11 @@ Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
// 2) Otherwise, the object is direct-initialized.
CXXConstructorDecl *Constructor = 0;
Expr **ConsArgs = (Expr**)ConstructorArgs;
if (AllocType->isDependentType()) {
// Skip all the checks.
}
// FIXME: Should check for primitive/aggregate here, not record.
if (const RecordType *RT = AllocType->getAsRecordType()) {
else if (const RecordType *RT = AllocType->getAsRecordType()) {
// FIXME: This is incorrect for when there is an empty initializer and
// no user-defined constructor. Must zero-initialize, not default-construct.
Constructor = PerformInitializationByConstructor(
@ -570,32 +581,34 @@ Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
// DR599 amends "pointer type" to "pointer to object type" in both cases.
Expr *Ex = (Expr *)Operand;
QualType Type = Ex->getType();
if (!Ex->isTypeDependent()) {
QualType Type = Ex->getType();
if (Type->isRecordType()) {
// FIXME: Find that one conversion function and amend the type.
if (Type->isRecordType()) {
// FIXME: Find that one conversion function and amend the type.
}
if (!Type->isPointerType()) {
Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange();
return true;
}
QualType Pointee = Type->getAsPointerType()->getPointeeType();
if (!Pointee->isVoidType() &&
DiagnoseIncompleteType(StartLoc, Pointee, diag::warn_delete_incomplete,
Ex->getSourceRange()))
return true;
else if (!Pointee->isObjectType()) {
Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex->getSourceRange();
return true;
}
// FIXME: Look up the correct operator delete overload and pass a pointer
// along.
// FIXME: Check access and ambiguity of operator delete and destructor.
}
if (!Type->isPointerType()) {
Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange();
return true;
}
QualType Pointee = Type->getAsPointerType()->getPointeeType();
if (!Pointee->isVoidType() &&
DiagnoseIncompleteType(StartLoc, Pointee, diag::warn_delete_incomplete,
Ex->getSourceRange()))
return true;
else if (!Pointee->isObjectType()) {
Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex->getSourceRange();
return true;
}
// FIXME: Look up the correct operator delete overload and pass a pointer
// along.
// FIXME: Check access and ambiguity of operator delete and destructor.
return new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, 0,
Ex, StartLoc);
}

Просмотреть файл

@ -0,0 +1,43 @@
// RUN: clang -fsyntax-only -verify %s
// Tests that dependent expressions are always allowed, whereas non-dependent
// are checked as usual.
#include <stddef.h>
// Fake typeid, lacking a typeinfo header.
namespace std { class type_info {}; }
struct dummy {};
template <typename T, typename U>
T f(T t1, U u1, int i1)
{
T t2 = i1;
t2 = i1 + u1;
++u1;
u1++;
int i2 = u1;
i1 = t1[u1];
i1 *= t1;
i1(u1, t1); // error
u1(i1, t1);
U u2 = (T)i1;
static_cast<void>(static_cast<U>(reinterpret_cast<T>(
dynamic_cast<U>(const_cast<T>(i1)))));
new U(i1, t1);
new int(t1, u1); // expected-error {{initializer of a builtin type can only take one argument}}
new (t1, u1) int;
delete t1;
dummy d1 = sizeof(t1); // expected-error {{cannot initialize 'd1'}}
dummy d2 = offsetof(T, foo); // expected-error {{cannot initialize 'd2'}}
dummy d3 = __alignof(u1); // expected-error {{cannot initialize 'd3'}}
i1 = typeid(t1); // expected-error {{incompatible type assigning}}
return u1;
}