зеркало из https://github.com/microsoft/clang-1.git
Move [LR]Value into CGValue.h
- No (intended) functional change. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@55221 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Родитель
a9e8fec800
Коммит
2eecaab0fa
|
@ -0,0 +1,208 @@
|
|||
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// These classes implement wrappers around llvm::Value in order to
|
||||
// fully represent the range of values for C L- and R- values.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef CLANG_CODEGEN_CGVALUE_H
|
||||
#define CLANG_CODEGEN_CGVALUE_H
|
||||
|
||||
#include "clang/AST/Type.h"
|
||||
|
||||
namespace clang {
|
||||
namespace CodeGen {
|
||||
|
||||
/// RValue - This trivial value class is used to represent the result of an
|
||||
/// expression that is evaluated. It can be one of three things: either a
|
||||
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
|
||||
/// address of an aggregate value in memory.
|
||||
class RValue {
|
||||
llvm::Value *V1, *V2;
|
||||
// TODO: Encode this into the low bit of pointer for more efficient
|
||||
// return-by-value.
|
||||
enum { Scalar, Complex, Aggregate } Flavor;
|
||||
|
||||
// FIXME: Aggregate rvalues need to retain information about whether they are
|
||||
// volatile or not.
|
||||
public:
|
||||
|
||||
bool isScalar() const { return Flavor == Scalar; }
|
||||
bool isComplex() const { return Flavor == Complex; }
|
||||
bool isAggregate() const { return Flavor == Aggregate; }
|
||||
|
||||
/// getScalar() - Return the Value* of this scalar value.
|
||||
llvm::Value *getScalarVal() const {
|
||||
assert(isScalar() && "Not a scalar!");
|
||||
return V1;
|
||||
}
|
||||
|
||||
/// getComplexVal - Return the real/imag components of this complex value.
|
||||
///
|
||||
std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
|
||||
return std::pair<llvm::Value *, llvm::Value *>(V1, V2);
|
||||
}
|
||||
|
||||
/// getAggregateAddr() - Return the Value* of the address of the aggregate.
|
||||
llvm::Value *getAggregateAddr() const {
|
||||
assert(isAggregate() && "Not an aggregate!");
|
||||
return V1;
|
||||
}
|
||||
|
||||
static RValue get(llvm::Value *V) {
|
||||
RValue ER;
|
||||
ER.V1 = V;
|
||||
ER.Flavor = Scalar;
|
||||
return ER;
|
||||
}
|
||||
static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
|
||||
RValue ER;
|
||||
ER.V1 = V1;
|
||||
ER.V2 = V2;
|
||||
ER.Flavor = Complex;
|
||||
return ER;
|
||||
}
|
||||
static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
|
||||
RValue ER;
|
||||
ER.V1 = C.first;
|
||||
ER.V2 = C.second;
|
||||
ER.Flavor = Complex;
|
||||
return ER;
|
||||
}
|
||||
static RValue getAggregate(llvm::Value *V) {
|
||||
RValue ER;
|
||||
ER.V1 = V;
|
||||
ER.Flavor = Aggregate;
|
||||
return ER;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/// LValue - This represents an lvalue references. Because C/C++ allow
|
||||
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
|
||||
/// bitrange.
|
||||
class LValue {
|
||||
// FIXME: alignment?
|
||||
|
||||
enum {
|
||||
Simple, // This is a normal l-value, use getAddress().
|
||||
VectorElt, // This is a vector element l-value (V[i]), use getVector*
|
||||
BitField, // This is a bitfield l-value, use getBitfield*.
|
||||
ExtVectorElt // This is an extended vector subset, use getExtVectorComp
|
||||
} LVType;
|
||||
|
||||
llvm::Value *V;
|
||||
|
||||
union {
|
||||
// Index into a vector subscript: V[i]
|
||||
llvm::Value *VectorIdx;
|
||||
|
||||
// ExtVector element subset: V.xyx
|
||||
llvm::Constant *VectorElts;
|
||||
|
||||
// BitField start bit and size
|
||||
struct {
|
||||
unsigned short StartBit;
|
||||
unsigned short Size;
|
||||
bool IsSigned;
|
||||
} BitfieldData;
|
||||
};
|
||||
|
||||
bool Volatile:1;
|
||||
// FIXME: set but never used, what effect should it have?
|
||||
bool Restrict:1;
|
||||
|
||||
private:
|
||||
static void SetQualifiers(unsigned Qualifiers, LValue& R) {
|
||||
R.Volatile = (Qualifiers&QualType::Volatile)!=0;
|
||||
R.Restrict = (Qualifiers&QualType::Restrict)!=0;
|
||||
}
|
||||
|
||||
public:
|
||||
bool isSimple() const { return LVType == Simple; }
|
||||
bool isVectorElt() const { return LVType == VectorElt; }
|
||||
bool isBitfield() const { return LVType == BitField; }
|
||||
bool isExtVectorElt() const { return LVType == ExtVectorElt; }
|
||||
|
||||
bool isVolatileQualified() const { return Volatile; }
|
||||
bool isRestrictQualified() const { return Restrict; }
|
||||
|
||||
// simple lvalue
|
||||
llvm::Value *getAddress() const { assert(isSimple()); return V; }
|
||||
// vector elt lvalue
|
||||
llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
|
||||
llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
|
||||
// extended vector elements.
|
||||
llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
|
||||
llvm::Constant *getExtVectorElts() const {
|
||||
assert(isExtVectorElt());
|
||||
return VectorElts;
|
||||
}
|
||||
// bitfield lvalue
|
||||
llvm::Value *getBitfieldAddr() const { assert(isBitfield()); return V; }
|
||||
unsigned short getBitfieldStartBit() const {
|
||||
assert(isBitfield());
|
||||
return BitfieldData.StartBit;
|
||||
}
|
||||
unsigned short getBitfieldSize() const {
|
||||
assert(isBitfield());
|
||||
return BitfieldData.Size;
|
||||
}
|
||||
bool isBitfieldSigned() const {
|
||||
assert(isBitfield());
|
||||
return BitfieldData.IsSigned;
|
||||
}
|
||||
|
||||
static LValue MakeAddr(llvm::Value *V, unsigned Qualifiers) {
|
||||
LValue R;
|
||||
R.LVType = Simple;
|
||||
R.V = V;
|
||||
SetQualifiers(Qualifiers,R);
|
||||
return R;
|
||||
}
|
||||
|
||||
static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
|
||||
unsigned Qualifiers) {
|
||||
LValue R;
|
||||
R.LVType = VectorElt;
|
||||
R.V = Vec;
|
||||
R.VectorIdx = Idx;
|
||||
SetQualifiers(Qualifiers,R);
|
||||
return R;
|
||||
}
|
||||
|
||||
static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
|
||||
unsigned Qualifiers) {
|
||||
LValue R;
|
||||
R.LVType = ExtVectorElt;
|
||||
R.V = Vec;
|
||||
R.VectorElts = Elts;
|
||||
SetQualifiers(Qualifiers,R);
|
||||
return R;
|
||||
}
|
||||
|
||||
static LValue MakeBitfield(llvm::Value *V, unsigned short StartBit,
|
||||
unsigned short Size, bool IsSigned,
|
||||
unsigned Qualifiers) {
|
||||
LValue R;
|
||||
R.LVType = BitField;
|
||||
R.V = V;
|
||||
R.BitfieldData.StartBit = StartBit;
|
||||
R.BitfieldData.Size = Size;
|
||||
R.BitfieldData.IsSigned = IsSigned;
|
||||
SetQualifiers(Qualifiers,R);
|
||||
return R;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace CodeGen
|
||||
} // end namespace clang
|
||||
|
||||
#endif
|
|
@ -29,6 +29,8 @@ namespace llvm {
|
|||
class Module;
|
||||
}
|
||||
|
||||
#include "CGValue.h"
|
||||
|
||||
namespace clang {
|
||||
class ASTContext;
|
||||
class Decl;
|
||||
|
@ -45,188 +47,6 @@ namespace CodeGen {
|
|||
class CodeGenTypes;
|
||||
class CGRecordLayout;
|
||||
|
||||
/// RValue - This trivial value class is used to represent the result of an
|
||||
/// expression that is evaluated. It can be one of three things: either a
|
||||
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
|
||||
/// address of an aggregate value in memory.
|
||||
class RValue {
|
||||
llvm::Value *V1, *V2;
|
||||
// TODO: Encode this into the low bit of pointer for more efficient
|
||||
// return-by-value.
|
||||
enum { Scalar, Complex, Aggregate } Flavor;
|
||||
|
||||
// FIXME: Aggregate rvalues need to retain information about whether they are
|
||||
// volatile or not.
|
||||
public:
|
||||
|
||||
bool isScalar() const { return Flavor == Scalar; }
|
||||
bool isComplex() const { return Flavor == Complex; }
|
||||
bool isAggregate() const { return Flavor == Aggregate; }
|
||||
|
||||
/// getScalar() - Return the Value* of this scalar value.
|
||||
llvm::Value *getScalarVal() const {
|
||||
assert(isScalar() && "Not a scalar!");
|
||||
return V1;
|
||||
}
|
||||
|
||||
/// getComplexVal - Return the real/imag components of this complex value.
|
||||
///
|
||||
std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
|
||||
return std::pair<llvm::Value *, llvm::Value *>(V1, V2);
|
||||
}
|
||||
|
||||
/// getAggregateAddr() - Return the Value* of the address of the aggregate.
|
||||
llvm::Value *getAggregateAddr() const {
|
||||
assert(isAggregate() && "Not an aggregate!");
|
||||
return V1;
|
||||
}
|
||||
|
||||
static RValue get(llvm::Value *V) {
|
||||
RValue ER;
|
||||
ER.V1 = V;
|
||||
ER.Flavor = Scalar;
|
||||
return ER;
|
||||
}
|
||||
static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
|
||||
RValue ER;
|
||||
ER.V1 = V1;
|
||||
ER.V2 = V2;
|
||||
ER.Flavor = Complex;
|
||||
return ER;
|
||||
}
|
||||
static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
|
||||
RValue ER;
|
||||
ER.V1 = C.first;
|
||||
ER.V2 = C.second;
|
||||
ER.Flavor = Complex;
|
||||
return ER;
|
||||
}
|
||||
static RValue getAggregate(llvm::Value *V) {
|
||||
RValue ER;
|
||||
ER.V1 = V;
|
||||
ER.Flavor = Aggregate;
|
||||
return ER;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/// LValue - This represents an lvalue references. Because C/C++ allow
|
||||
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
|
||||
/// bitrange.
|
||||
class LValue {
|
||||
// FIXME: alignment?
|
||||
|
||||
enum {
|
||||
Simple, // This is a normal l-value, use getAddress().
|
||||
VectorElt, // This is a vector element l-value (V[i]), use getVector*
|
||||
BitField, // This is a bitfield l-value, use getBitfield*.
|
||||
ExtVectorElt // This is an extended vector subset, use getExtVectorComp
|
||||
} LVType;
|
||||
|
||||
llvm::Value *V;
|
||||
|
||||
union {
|
||||
// Index into a vector subscript: V[i]
|
||||
llvm::Value *VectorIdx;
|
||||
|
||||
// ExtVector element subset: V.xyx
|
||||
llvm::Constant *VectorElts;
|
||||
|
||||
// BitField start bit and size
|
||||
struct {
|
||||
unsigned short StartBit;
|
||||
unsigned short Size;
|
||||
bool IsSigned;
|
||||
} BitfieldData;
|
||||
};
|
||||
|
||||
bool Volatile:1;
|
||||
// FIXME: set but never used, what effect should it have?
|
||||
bool Restrict:1;
|
||||
|
||||
private:
|
||||
static void SetQualifiers(unsigned Qualifiers, LValue& R) {
|
||||
R.Volatile = (Qualifiers&QualType::Volatile)!=0;
|
||||
R.Restrict = (Qualifiers&QualType::Restrict)!=0;
|
||||
}
|
||||
|
||||
public:
|
||||
bool isSimple() const { return LVType == Simple; }
|
||||
bool isVectorElt() const { return LVType == VectorElt; }
|
||||
bool isBitfield() const { return LVType == BitField; }
|
||||
bool isExtVectorElt() const { return LVType == ExtVectorElt; }
|
||||
|
||||
bool isVolatileQualified() const { return Volatile; }
|
||||
bool isRestrictQualified() const { return Restrict; }
|
||||
|
||||
// simple lvalue
|
||||
llvm::Value *getAddress() const { assert(isSimple()); return V; }
|
||||
// vector elt lvalue
|
||||
llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
|
||||
llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
|
||||
// extended vector elements.
|
||||
llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
|
||||
llvm::Constant *getExtVectorElts() const {
|
||||
assert(isExtVectorElt());
|
||||
return VectorElts;
|
||||
}
|
||||
// bitfield lvalue
|
||||
llvm::Value *getBitfieldAddr() const { assert(isBitfield()); return V; }
|
||||
unsigned short getBitfieldStartBit() const {
|
||||
assert(isBitfield());
|
||||
return BitfieldData.StartBit;
|
||||
}
|
||||
unsigned short getBitfieldSize() const {
|
||||
assert(isBitfield());
|
||||
return BitfieldData.Size;
|
||||
}
|
||||
bool isBitfieldSigned() const {
|
||||
assert(isBitfield());
|
||||
return BitfieldData.IsSigned;
|
||||
}
|
||||
|
||||
static LValue MakeAddr(llvm::Value *V, unsigned Qualifiers) {
|
||||
LValue R;
|
||||
R.LVType = Simple;
|
||||
R.V = V;
|
||||
SetQualifiers(Qualifiers,R);
|
||||
return R;
|
||||
}
|
||||
|
||||
static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
|
||||
unsigned Qualifiers) {
|
||||
LValue R;
|
||||
R.LVType = VectorElt;
|
||||
R.V = Vec;
|
||||
R.VectorIdx = Idx;
|
||||
SetQualifiers(Qualifiers,R);
|
||||
return R;
|
||||
}
|
||||
|
||||
static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
|
||||
unsigned Qualifiers) {
|
||||
LValue R;
|
||||
R.LVType = ExtVectorElt;
|
||||
R.V = Vec;
|
||||
R.VectorElts = Elts;
|
||||
SetQualifiers(Qualifiers,R);
|
||||
return R;
|
||||
}
|
||||
|
||||
static LValue MakeBitfield(llvm::Value *V, unsigned short StartBit,
|
||||
unsigned short Size, bool IsSigned,
|
||||
unsigned Qualifiers) {
|
||||
LValue R;
|
||||
R.LVType = BitField;
|
||||
R.V = V;
|
||||
R.BitfieldData.StartBit = StartBit;
|
||||
R.BitfieldData.Size = Size;
|
||||
R.BitfieldData.IsSigned = IsSigned;
|
||||
SetQualifiers(Qualifiers,R);
|
||||
return R;
|
||||
}
|
||||
};
|
||||
|
||||
/// CodeGenFunction - This class organizes the per-function state that is used
|
||||
/// while generating LLVM code.
|
||||
class CodeGenFunction {
|
||||
|
|
Загрузка…
Ссылка в новой задаче