Factor out the constant generation into its own file.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@46386 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Anders Carlsson 2008-01-26 01:36:00 +00:00
Родитель 33d4aab80f
Коммит 3b1d57b623
3 изменённых файлов: 377 добавлений и 345 удалений

371
CodeGen/CGExprConstant.cpp Normal file
Просмотреть файл

@ -0,0 +1,371 @@
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Constant Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using namespace CodeGen;
namespace {
class VISIBILITY_HIDDEN ConstExprEmitter : public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
CodeGenModule &CGM;
public:
ConstExprEmitter(CodeGenModule &cgm)
: CGM(cgm) {
}
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
llvm::Constant *VisitStmt(Stmt *S) {
CGM.WarnUnsupported(S, "constant expression");
return 0;
}
llvm::Constant *VisitParenExpr(ParenExpr *PE) {
return Visit(PE->getSubExpr());
}
// Leaves
llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *E) {
return llvm::ConstantInt::get(E->getValue());
}
llvm::Constant *VisitFloatingLiteral(const FloatingLiteral *E) {
return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue());
}
llvm::Constant *VisitCharacterLiteral(const CharacterLiteral *E) {
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
}
llvm::Constant *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
}
llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
return Visit(E->getInitializer());
}
llvm::Constant *VisitCastExpr(const CastExpr* E) {
llvm::Constant *C = Visit(E->getSubExpr());
return EmitConversion(C, E->getSubExpr()->getType(), E->getType());
}
llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
if (ILE->getType()->isVoidType()) {
// FIXME: Remove this when sema of initializers is finished (and the code
// below).
CGM.WarnUnsupported(ILE, "initializer");
return 0;
}
assert((ILE->getType()->isArrayType() || ILE->getType()->isStructureType() ||
ILE->getType()->isVectorType()) &&
"Bad type for init list!");
CodeGenTypes& Types = CGM.getTypes();
unsigned NumInitElements = ILE->getNumInits();
unsigned NumInitableElts = NumInitElements;
const llvm::CompositeType *CType =
cast<llvm::CompositeType>(Types.ConvertType(ILE->getType()));
assert(CType);
std::vector<llvm::Constant*> Elts;
// Initialising an array requires us to automatically initialise any
// elements that have not been initialised explicitly
const llvm::ArrayType *AType = 0;
const llvm::Type *AElemTy = 0;
unsigned NumArrayElements = 0;
// If this is an array, we may have to truncate the initializer
if ((AType = dyn_cast<llvm::ArrayType>(CType))) {
NumArrayElements = AType->getNumElements();
AElemTy = AType->getElementType();
NumInitableElts = std::min(NumInitableElts, NumArrayElements);
}
// Copy initializer elements.
unsigned i = 0;
for (i = 0; i < NumInitableElts; ++i) {
llvm::Constant *C = Visit(ILE->getInit(i));
// FIXME: Remove this when sema of initializers is finished (and the code
// above).
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
if (ILE->getType()->isVoidType()) return 0;
return llvm::UndefValue::get(CType);
}
assert (C && "Failed to create initializer expression");
Elts.push_back(C);
}
if (ILE->getType()->isStructureType())
return llvm::ConstantStruct::get(cast<llvm::StructType>(CType), Elts);
if (ILE->getType()->isVectorType())
return llvm::ConstantVector::get(cast<llvm::VectorType>(CType), Elts);
// Make sure we have an array at this point
assert(AType);
// Initialize remaining array elements.
for (; i < NumArrayElements; ++i)
Elts.push_back(llvm::Constant::getNullValue(AElemTy));
return llvm::ConstantArray::get(AType, Elts);
}
llvm::Constant *VisitImplicitCastExpr(ImplicitCastExpr *ICExpr) {
// If this is due to array->pointer conversion, emit the array expression as
// an l-value.
if (ICExpr->getSubExpr()->getType()->isArrayType()) {
// Note that VLAs can't exist for global variables.
// The only thing that can have array type like this is a
// DeclRefExpr(FileVarDecl)?
const DeclRefExpr *DRE = cast<DeclRefExpr>(ICExpr->getSubExpr());
const VarDecl *VD = cast<VarDecl>(DRE->getDecl());
llvm::Constant *C = CGM.GetAddrOfGlobalVar(VD, false);
assert(isa<llvm::PointerType>(C->getType()) &&
isa<llvm::ArrayType>(cast<llvm::PointerType>(C->getType())
->getElementType()));
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *Ops[] = {Idx0, Idx0};
C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
// The resultant pointer type can be implicitly cast to other pointer
// types as well, for example void*.
const llvm::Type *DestPTy = ConvertType(ICExpr->getType());
assert(isa<llvm::PointerType>(DestPTy) &&
"Only expect implicit cast to pointer");
return llvm::ConstantExpr::getBitCast(C, DestPTy);
}
llvm::Constant *C = Visit(ICExpr->getSubExpr());
return EmitConversion(C, ICExpr->getSubExpr()->getType(),ICExpr->getType());
}
llvm::Constant *VisitStringLiteral(StringLiteral *E) {
const char *StrData = E->getStrData();
unsigned Len = E->getByteLength();
// If the string has a pointer type, emit it as a global and use the pointer
// to the global as its value.
if (E->getType()->isPointerType())
return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len));
// Otherwise this must be a string initializing an array in a static
// initializer. Don't emit it as the address of the string, emit the string
// data itself as an inline array.
const ConstantArrayType *CAT = E->getType()->getAsConstantArrayType();
assert(CAT && "String isn't pointer or array!");
std::string Str(StrData, StrData + Len);
// Null terminate the string before potentially truncating it.
// FIXME: What about wchar_t strings?
Str.push_back(0);
uint64_t RealLen = CAT->getSize().getZExtValue();
// String or grow the initializer to the required size.
if (RealLen != Str.size())
Str.resize(RealLen);
return llvm::ConstantArray::get(Str, false);
}
llvm::Constant *VisitDeclRefExpr(DeclRefExpr *E) {
const ValueDecl *Decl = E->getDecl();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
return CGM.GetAddrOfFunctionDecl(FD, false);
assert(0 && "Unsupported decl ref type!");
return 0;
}
llvm::Constant *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
}
// Unary operators
llvm::Constant *VisitUnaryPlus(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
llvm::Constant *VisitUnaryMinus(const UnaryOperator *E) {
return llvm::ConstantExpr::getNeg(Visit(E->getSubExpr()));
}
llvm::Constant *VisitUnaryNot(const UnaryOperator *E) {
return llvm::ConstantExpr::getNot(Visit(E->getSubExpr()));
}
llvm::Constant *VisitUnaryLNot(const UnaryOperator *E) {
llvm::Constant *SubExpr = Visit(E->getSubExpr());
if (E->getSubExpr()->getType()->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
SubExpr = llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UEQ, SubExpr,
Zero);
} else {
assert((E->getSubExpr()->getType()->isIntegerType() ||
E->getSubExpr()->getType()->isPointerType()) &&
"Unknown scalar type to convert");
// Compare against an integer or pointer null.
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
SubExpr = llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, SubExpr,
Zero);
}
return llvm::ConstantExpr::getZExt(SubExpr, ConvertType(E->getType()));
}
llvm::Constant *VisitUnarySizeOf(const UnaryOperator *E) {
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
}
llvm::Constant *VisitUnaryAlignOf(const UnaryOperator *E) {
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
}
// Utility methods
const llvm::Type *ConvertType(QualType T) {
return CGM.getTypes().ConvertType(T);
}
llvm::Constant *EmitConversionToBool(llvm::Constant *Src, QualType SrcType) {
assert(SrcType->isCanonical() && "EmitConversion strips typedefs");
if (SrcType->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Src, Zero);
}
assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
"Unknown scalar type to convert");
// Compare against an integer or pointer null.
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Src, Zero);
}
llvm::Constant *EmitConversion(llvm::Constant *Src, QualType SrcType,
QualType DstType) {
SrcType = SrcType.getCanonicalType();
DstType = DstType.getCanonicalType();
if (SrcType == DstType) return Src;
// Handle conversions to bool first, they are special: comparisons against 0.
if (DstType->isBooleanType())
return EmitConversionToBool(Src, SrcType);
const llvm::Type *DstTy = ConvertType(DstType);
// Ignore conversions like int -> uint.
if (Src->getType() == DstTy)
return Src;
// Handle pointer conversions next: pointers can only be converted to/from
// other pointers and integers.
if (isa<PointerType>(DstType)) {
// The source value may be an integer, or a pointer.
if (isa<llvm::PointerType>(Src->getType()))
return llvm::ConstantExpr::getBitCast(Src, DstTy);
assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
return llvm::ConstantExpr::getIntToPtr(Src, DstTy);
}
if (isa<PointerType>(SrcType)) {
// Must be an ptr to int cast.
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
return llvm::ConstantExpr::getPtrToInt(Src, DstTy);
}
// A scalar source can be splatted to a vector of the same element type
if (isa<llvm::VectorType>(DstTy) && !isa<VectorType>(SrcType)) {
const llvm::VectorType *VT = cast<llvm::VectorType>(DstTy);
assert((VT->getElementType() == Src->getType()) &&
"Vector element type must match scalar type to splat.");
unsigned NumElements = DstType->getAsVectorType()->getNumElements();
llvm::SmallVector<llvm::Constant*, 16> Elements;
for (unsigned i = 0; i < NumElements; i++)
Elements.push_back(Src);
return llvm::ConstantVector::get(&Elements[0], NumElements);
}
if (isa<llvm::VectorType>(Src->getType()) ||
isa<llvm::VectorType>(DstTy)) {
return llvm::ConstantExpr::getBitCast(Src, DstTy);
}
// Finally, we have the arithmetic types: real int/float.
if (isa<llvm::IntegerType>(Src->getType())) {
bool InputSigned = SrcType->isSignedIntegerType();
if (isa<llvm::IntegerType>(DstTy))
return llvm::ConstantExpr::getIntegerCast(Src, DstTy, InputSigned);
else if (InputSigned)
return llvm::ConstantExpr::getSIToFP(Src, DstTy);
else
return llvm::ConstantExpr::getUIToFP(Src, DstTy);
}
assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(DstTy)) {
if (DstType->isSignedIntegerType())
return llvm::ConstantExpr::getFPToSI(Src, DstTy);
else
return llvm::ConstantExpr::getFPToUI(Src, DstTy);
}
assert(DstTy->isFloatingPoint() && "Unknown real conversion");
if (DstTy->getTypeID() < Src->getType()->getTypeID())
return llvm::ConstantExpr::getFPTrunc(Src, DstTy);
else
return llvm::ConstantExpr::getFPExtend(Src, DstTy);
}
llvm::Constant *EmitSizeAlignOf(QualType TypeToSize,
QualType RetType, bool isSizeOf) {
std::pair<uint64_t, unsigned> Info =
CGM.getContext().getTypeInfo(TypeToSize, SourceLocation());
uint64_t Val = isSizeOf ? Info.first : Info.second;
Val /= 8; // Return size in bytes, not bits.
assert(RetType->isIntegerType() && "Result type must be an integer!");
uint32_t ResultWidth = static_cast<uint32_t>(
CGM.getContext().getTypeSize(RetType, SourceLocation()));
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
}
};
} // end anonymous namespace.
llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E)
{
QualType type = E->getType().getCanonicalType();
if (type->isIntegerType()) {
llvm::APSInt
Value(static_cast<uint32_t>(Context.getTypeSize(type, SourceLocation())));
if (E->isIntegerConstantExpr(Value, Context)) {
return llvm::ConstantInt::get(Value);
}
}
return ConstExprEmitter(*this).Visit(const_cast<Expr*>(E));
}

Просмотреть файл

@ -190,349 +190,8 @@ void CodeGenModule::EmitFunction(const FunctionDecl *FD) {
CodeGenFunction(*this).GenerateCode(FD);
}
static llvm::Constant *GenerateConstantExpr(const Expr *Expression,
CodeGenModule &CGM);
/// GenerateConversionToBool - Generate comparison to zero for conversion to
/// bool
static llvm::Constant *GenerateConversionToBool(llvm::Constant *Expression,
QualType Source) {
if (Source->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Constant *Zero = llvm::Constant::getNullValue(Expression->getType());
return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Expression,
Zero);
}
assert((Source->isIntegerType() || Source->isPointerType()) &&
"Unknown scalar type to convert");
// Compare against an integer or pointer null.
llvm::Constant *Zero = llvm::Constant::getNullValue(Expression->getType());
return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Expression, Zero);
}
/// GenerateConstantCast - Generates a constant cast to convert the Expression
/// into the Target type.
static llvm::Constant *GenerateConstantCast(const Expr *Expression,
QualType Target,
CodeGenModule &CGM) {
CodeGenTypes& Types = CGM.getTypes();
QualType Source = Expression->getType().getCanonicalType();
Target = Target.getCanonicalType();
assert (!Target->isVoidType());
llvm::Constant *SubExpr = GenerateConstantExpr(Expression, CGM);
if (Source == Target)
return SubExpr;
// Handle conversions to bool first, they are special: comparisons against 0.
if (Target->isBooleanType())
return GenerateConversionToBool(SubExpr, Source);
const llvm::Type *SourceType = Types.ConvertType(Source);
const llvm::Type *TargetType = Types.ConvertType(Target);
// Ignore conversions like int -> uint.
if (SubExpr->getType() == TargetType)
return SubExpr;
// Handle pointer conversions next: pointers can only be converted to/from
// other pointers and integers.
if (isa<llvm::PointerType>(TargetType)) {
// The source value may be an integer, or a pointer.
if (isa<llvm::PointerType>(SubExpr->getType()))
return llvm::ConstantExpr::getBitCast(SubExpr, TargetType);
assert(Source->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
return llvm::ConstantExpr::getIntToPtr(SubExpr, TargetType);
}
if (isa<llvm::PointerType>(SourceType)) {
// Must be an ptr to int cast.
assert(isa<llvm::IntegerType>(TargetType) && "not ptr->int?");
return llvm::ConstantExpr::getPtrToInt(SubExpr, TargetType);
}
if (Source->isRealFloatingType() && Target->isRealFloatingType()) {
return llvm::ConstantExpr::getFPCast(SubExpr, TargetType);
}
// Finally, we have the arithmetic types: real int/float.
if (isa<llvm::IntegerType>(SourceType)) {
bool InputSigned = Source->isSignedIntegerType();
if (isa<llvm::IntegerType>(TargetType))
return llvm::ConstantExpr::getIntegerCast(SubExpr, TargetType,
InputSigned);
else if (InputSigned)
return llvm::ConstantExpr::getSIToFP(SubExpr, TargetType);
else
return llvm::ConstantExpr::getUIToFP(SubExpr, TargetType);
}
assert(SubExpr->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(TargetType)) {
if (Target->isSignedIntegerType())
return llvm::ConstantExpr::getFPToSI(SubExpr, TargetType);
else
return llvm::ConstantExpr::getFPToUI(SubExpr, TargetType);
}
assert(TargetType->isFloatingPoint() && "Unknown real conversion");
if (TargetType->getTypeID() < SubExpr->getType()->getTypeID())
return llvm::ConstantExpr::getFPTrunc(SubExpr, TargetType);
else
return llvm::ConstantExpr::getFPExtend(SubExpr, TargetType);
assert (!"Unsupported cast type in global intialiser.");
return 0;
}
/// GenerateAggregateInit - Generate a Constant initaliser for global array or
/// struct typed variables.
static llvm::Constant *GenerateAggregateInit(const InitListExpr *ILE,
CodeGenModule &CGM) {
if (ILE->getType()->isVoidType()) {
// FIXME: Remove this when sema of initializers is finished (and the code
// below).
CGM.WarnUnsupported(ILE, "initializer");
return 0;
}
assert((ILE->getType()->isArrayType() || ILE->getType()->isStructureType() ||
ILE->getType()->isVectorType()) &&
"Bad type for init list!");
CodeGenTypes& Types = CGM.getTypes();
unsigned NumInitElements = ILE->getNumInits();
unsigned NumInitableElts = NumInitElements;
const llvm::CompositeType *CType =
cast<llvm::CompositeType>(Types.ConvertType(ILE->getType()));
assert(CType);
std::vector<llvm::Constant*> Elts;
// Initialising an array requires us to automatically initialise any
// elements that have not been initialised explicitly
const llvm::ArrayType *AType = 0;
const llvm::Type *AElemTy = 0;
unsigned NumArrayElements = 0;
// If this is an array, we may have to truncate the initializer
if ((AType = dyn_cast<llvm::ArrayType>(CType))) {
NumArrayElements = AType->getNumElements();
AElemTy = AType->getElementType();
NumInitableElts = std::min(NumInitableElts, NumArrayElements);
}
// Copy initializer elements.
unsigned i = 0;
for (i = 0; i < NumInitableElts; ++i) {
llvm::Constant *C = GenerateConstantExpr(ILE->getInit(i), CGM);
// FIXME: Remove this when sema of initializers is finished (and the code
// above).
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
if (ILE->getType()->isVoidType()) return 0;
return llvm::UndefValue::get(CType);
}
assert (C && "Failed to create initialiser expression");
Elts.push_back(C);
}
if (ILE->getType()->isStructureType())
return llvm::ConstantStruct::get(cast<llvm::StructType>(CType), Elts);
if (ILE->getType()->isVectorType())
return llvm::ConstantVector::get(cast<llvm::VectorType>(CType), Elts);
// Make sure we have an array at this point
assert(AType);
// Initialize remaining array elements.
for (; i < NumArrayElements; ++i)
Elts.push_back(llvm::Constant::getNullValue(AElemTy));
return llvm::ConstantArray::get(AType, Elts);
}
/// GenerateConstantExpr - Recursively builds a constant initialiser for the
/// given expression.
static llvm::Constant *GenerateConstantExpr(const Expr *Expression,
CodeGenModule &CGM) {
CodeGenTypes& Types = CGM.getTypes();
ASTContext& Context = CGM.getContext();
assert ((Expression->isConstantExpr(Context, 0) ||
Expression->getStmtClass() == Stmt::InitListExprClass) &&
"Only constant global initialisers are supported.");
QualType type = Expression->getType().getCanonicalType();
if (type->isIntegerType()) {
llvm::APSInt
Value(static_cast<uint32_t>(Context.getTypeSize(type, SourceLocation())));
if (Expression->isIntegerConstantExpr(Value, Context)) {
return llvm::ConstantInt::get(Value);
}
}
switch (Expression->getStmtClass()) {
default: break; // default emits a warning and returns bogus value.
case Stmt::DeclRefExprClass: {
const ValueDecl *Decl = cast<DeclRefExpr>(Expression)->getDecl();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
return CGM.GetAddrOfFunctionDecl(FD, false);
break;
}
// Generate constant for floating point literal values.
case Stmt::FloatingLiteralClass: {
const FloatingLiteral *FLiteral = cast<FloatingLiteral>(Expression);
return llvm::ConstantFP::get(Types.ConvertType(type), FLiteral->getValue());
}
// Generate constant for string literal values.
case Stmt::StringLiteralClass: {
const StringLiteral *String = cast<StringLiteral>(Expression);
const char *StrData = String->getStrData();
unsigned Len = String->getByteLength();
// If the string has a pointer type, emit it as a global and use the pointer
// to the global as its value.
if (String->getType()->isPointerType())
return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len));
// Otherwise this must be a string initializing an array in a static
// initializer. Don't emit it as the address of the string, emit the string
// data itself as an inline array.
const ConstantArrayType *CAT = String->getType()->getAsConstantArrayType();
assert(CAT && "String isn't pointer or array!");
std::string Str(StrData, StrData + Len);
// Null terminate the string before potentially truncating it.
// FIXME: What about wchar_t strings?
Str.push_back(0);
uint64_t RealLen = CAT->getSize().getZExtValue();
// String or grow the initializer to the required size.
if (RealLen != Str.size())
Str.resize(RealLen);
return llvm::ConstantArray::get(Str, false);
}
// Generate initializer for the CompoundLiteral
case Stmt::CompoundLiteralExprClass: {
const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(Expression);
return GenerateConstantExpr(CLE->getInitializer(), CGM);
}
// Elide parenthesis.
case Stmt::ParenExprClass:
return GenerateConstantExpr(cast<ParenExpr>(Expression)->getSubExpr(), CGM);
// Generate constant for sizeof operator.
// FIXME: Need to support AlignOf
case Stmt::SizeOfAlignOfTypeExprClass: {
const SizeOfAlignOfTypeExpr *SOExpr =
cast<SizeOfAlignOfTypeExpr>(Expression);
assert (SOExpr->isSizeOf());
return llvm::ConstantExpr::getSizeOf(Types.ConvertType(type));
}
// Generate constant cast expressions.
case Stmt::CastExprClass:
return GenerateConstantCast(cast<CastExpr>(Expression)->getSubExpr(), type,
CGM);
case Stmt::UnaryOperatorClass: {
const UnaryOperator *Op = cast<UnaryOperator>(Expression);
llvm::Constant *SubExpr = GenerateConstantExpr(Op->getSubExpr(), CGM);
// FIXME: These aren't right for complex.
switch (Op->getOpcode()) {
default: break;
case UnaryOperator::Plus:
case UnaryOperator::Extension:
return SubExpr;
case UnaryOperator::Minus:
return llvm::ConstantExpr::getNeg(SubExpr);
case UnaryOperator::Not:
return llvm::ConstantExpr::getNot(SubExpr);
case UnaryOperator::LNot:
if (Op->getSubExpr()->getType()->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
SubExpr = llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, SubExpr,
Zero);
} else {
assert((Op->getSubExpr()->getType()->isIntegerType() ||
Op->getSubExpr()->getType()->isPointerType()) &&
"Unknown scalar type to convert");
// Compare against an integer or pointer null.
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
SubExpr = llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, SubExpr,
Zero);
}
return llvm::ConstantExpr::getZExt(SubExpr, Types.ConvertType(type));
//SizeOf, AlignOf, // [C99 6.5.3.4] Sizeof (expr, not type) operator.
//Real, Imag, // "__real expr"/"__imag expr" Extension.
//OffsetOf // __builtin_offsetof
}
break;
}
case Stmt::ImplicitCastExprClass: {
const ImplicitCastExpr *ICExpr = cast<ImplicitCastExpr>(Expression);
// If this is due to array->pointer conversion, emit the array expression as
// an l-value.
if (ICExpr->getSubExpr()->getType()->isArrayType()) {
// Note that VLAs can't exist for global variables.
// The only thing that can have array type like this is a
// DeclRefExpr(FileVarDecl)?
const DeclRefExpr *DRE = cast<DeclRefExpr>(ICExpr->getSubExpr());
const VarDecl *VD = cast<VarDecl>(DRE->getDecl());
llvm::Constant *C = CGM.GetAddrOfGlobalVar(VD, false);
assert(isa<llvm::PointerType>(C->getType()) &&
isa<llvm::ArrayType>(cast<llvm::PointerType>(C->getType())
->getElementType()));
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *Ops[] = {Idx0, Idx0};
C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
// The resultant pointer type can be implicitly casted to other pointer
// types as well, for example void*.
const llvm::Type *DestPTy = Types.ConvertType(type);
assert(isa<llvm::PointerType>(DestPTy) &&
"Only expect implicit cast to pointer");
return llvm::ConstantExpr::getBitCast(C, DestPTy);
}
return GenerateConstantCast(ICExpr->getSubExpr(), type, CGM);
}
// Generate a constant array access expression
// FIXME: Clang's semantic analysis incorrectly prevents array access in
// global initialisers, preventing us from testing this.
case Stmt::ArraySubscriptExprClass: {
const ArraySubscriptExpr* ASExpr = cast<ArraySubscriptExpr>(Expression);
llvm::Constant *Base = GenerateConstantExpr(ASExpr->getBase(), CGM);
llvm::Constant *Index = GenerateConstantExpr(ASExpr->getIdx(), CGM);
return llvm::ConstantExpr::getExtractElement(Base, Index);
}
// Generate a constant expression to initialise an aggregate type, such as
// an array or struct.
case Stmt::InitListExprClass:
return GenerateAggregateInit(cast<InitListExpr>(Expression), CGM);
}
CGM.WarnUnsupported(Expression, "initializer");
return llvm::UndefValue::get(Types.ConvertType(type));
}
llvm::Constant *CodeGenModule::EmitGlobalInit(const Expr *Expression) {
return GenerateConstantExpr(Expression, *this);
llvm::Constant *CodeGenModule::EmitGlobalInit(const Expr *Expr) {
return EmitConstantExpr(Expr);
}
void CodeGenModule::EmitGlobalVar(const FileVarDecl *D) {

Просмотреть файл

@ -87,12 +87,14 @@ public:
void EmitFunction(const FunctionDecl *FD);
void EmitGlobalVar(const FileVarDecl *D);
void EmitGlobalVarDeclarator(const FileVarDecl *D);
llvm::Constant *EmitGlobalInit(const Expr *Expression);
llvm::Constant *EmitGlobalInit(const Expr *E);
llvm::Constant *EmitConstantExpr(const Expr *E);
void PrintStats() {}
/// WarnUnsupported - Print out a warning that codegen doesn't support the
/// specified stmt yet.
void WarnUnsupported(const Stmt *S, const char *Type);
/// WarnUnsupported - Print out a warning that codegen doesn't support the