Revert r158887. This fixes pr13168.

Revert "If an object (such as a std::string) with an appropriate c_str() member function"

This reverts commit 7d96f6106b.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@158949 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Rafael Espindola 2012-06-21 23:44:21 +00:00
Родитель e601b237e4
Коммит 4e294eea2c
8 изменённых файлов: 217 добавлений и 518 удалений

Просмотреть файл

@ -4723,11 +4723,6 @@ def err_cannot_pass_objc_interface_to_vararg : Error<
"cannot pass object with interface type %0 by-value through variadic "
"%select{function|block|method}1">;
def warn_non_pod_vararg_with_format_string : Warning<
"cannot pass %select{non-POD|non-trivial}0 object of type %1 to variadic "
"function; expected type from format string was %2">,
InGroup<DiagGroup<"non-pod-varargs">>, DefaultError;
def warn_cannot_pass_non_pod_arg_to_vararg : Warning<
"cannot pass object of %select{non-POD|non-trivial}0 type %1 through variadic"
" %select{function|block|method|constructor}2; call will abort at runtime">,
@ -5211,7 +5206,6 @@ def warn_scanf_scanlist_incomplete : Warning<
"no closing ']' for '%%[' in scanf format string">,
InGroup<Format>;
def note_format_string_defined : Note<"format string is defined here">;
def note_printf_c_str: Note<"did you mean to call the %0 method?">;
def warn_null_arg : Warning<
"null passed to a callee which requires a non-null argument">,
@ -5672,3 +5666,4 @@ def err_module_private_definition : Error<
}
} // end of sema component.

Просмотреть файл

@ -6409,21 +6409,6 @@ public:
VariadicDoesNotApply
};
VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr *Fn);
// Used for determining in which context a type is allowed to be passed to a
// vararg function.
enum VarArgKind {
VAK_Valid,
VAK_ValidInCXX11,
VAK_Invalid
};
// Determines which VarArgKind fits an expression.
VarArgKind isValidVarArgType(const QualType &Ty);
/// GatherArgumentsForCall - Collector argument expressions for various
/// form of call prototypes.
bool GatherArgumentsForCall(SourceLocation CallLoc,
@ -6436,14 +6421,10 @@ public:
bool AllowExplicit = false);
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
// will return ExprError() if the resulting type is not a POD type.
// will warn if the resulting type is not a POD type.
ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
FunctionDecl *FDecl);
/// Checks to see if the given expression is a valid argument to a variadic
/// function, issuing a diagnostic and returning NULL if not.
bool variadicArgumentPODCheck(const Expr *E, VariadicCallType CT);
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
@ -7018,33 +6999,10 @@ private:
const ArraySubscriptExpr *ASE=0,
bool AllowOnePastEnd=true, bool IndexNegated=false);
void CheckArrayAccess(const Expr *E);
// Used to grab the relevant information from a FormatAttr and a
// FunctionDeclaration.
struct FormatStringInfo {
unsigned FormatIdx;
unsigned FirstDataArg;
bool HasVAListArg;
};
bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
FormatStringInfo *FSI);
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
const FunctionProtoType *Proto);
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall);
bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
Expr **Args, unsigned NumArgs);
bool CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
const FunctionProtoType *Proto);
void CheckConstructorCall(FunctionDecl *FDecl,
Expr **Args,
unsigned NumArgs,
const FunctionProtoType *Proto,
SourceLocation Loc);
void checkCall(NamedDecl *FDecl, Expr **Args, unsigned NumArgs,
unsigned NumProtoArgs, bool IsMemberFunction,
SourceLocation Loc, SourceRange Range,
VariadicCallType CallType);
bool CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall);
bool CheckObjCString(Expr *Arg);
@ -7079,19 +7037,9 @@ private:
FST_Unknown
};
static FormatStringType GetFormatStringType(const FormatAttr *Format);
enum StringLiteralCheckType {
SLCT_NotALiteral,
SLCT_UncheckedLiteral,
SLCT_CheckedLiteral
};
StringLiteralCheckType checkFormatStringExpr(const Expr *E,
Expr **Args, unsigned NumArgs,
bool HasVAListArg,
unsigned format_idx,
unsigned firstDataArg,
FormatStringType Type,
bool SemaCheckStringLiteral(const Expr *E, Expr **Args, unsigned NumArgs,
bool HasVAListArg, unsigned format_idx,
unsigned firstDataArg, FormatStringType Type,
bool inFunctionCall = true);
void CheckFormatString(const StringLiteral *FExpr, const Expr *OrigFormatExpr,
@ -7099,11 +7047,11 @@ private:
unsigned format_idx, unsigned firstDataArg,
FormatStringType Type, bool inFunctionCall);
bool CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall);
bool CheckFormatArguments(const FormatAttr *Format, Expr **Args,
void CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall);
void CheckFormatArguments(const FormatAttr *Format, Expr **Args,
unsigned NumArgs, bool IsCXXMember,
SourceLocation Loc, SourceRange Range);
bool CheckFormatArguments(Expr **Args, unsigned NumArgs,
void CheckFormatArguments(Expr **Args, unsigned NumArgs,
bool HasVAListArg, unsigned format_idx,
unsigned firstDataArg, FormatStringType Type,
SourceLocation Loc, SourceRange range);

Просмотреть файл

@ -16,7 +16,6 @@
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Analysis/Analyses/FormatString.h"
#include "clang/AST/ASTContext.h"
@ -419,91 +418,34 @@ bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
return false;
}
/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
/// parameter with the FormatAttr's correct format_idx and firstDataArg.
/// Returns true when the format fits the function and the FormatStringInfo has
/// been populated.
bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
FormatStringInfo *FSI) {
FSI->HasVAListArg = Format->getFirstArg() == 0;
FSI->FormatIdx = Format->getFormatIdx() - 1;
FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
// Get the IdentifierInfo* for the called function.
IdentifierInfo *FnInfo = FDecl->getIdentifier();
// The way the format attribute works in GCC, the implicit this argument
// of member functions is counted. However, it doesn't appear in our own
// lists, so decrement format_idx in that case.
if (IsCXXMember) {
if(FSI->FormatIdx == 0)
// None of the checks below are needed for functions that don't have
// simple names (e.g., C++ conversion functions).
if (!FnInfo)
return false;
--FSI->FormatIdx;
if (FSI->FirstDataArg != 0)
--FSI->FirstDataArg;
}
return true;
}
/// Handles the checks for format strings, non-POD arguments to vararg
/// functions, and NULL arguments passed to non-NULL parameters.
void Sema::checkCall(NamedDecl *FDecl, Expr **Args,
unsigned NumArgs,
unsigned NumProtoArgs,
bool IsMemberFunction,
SourceLocation Loc,
SourceRange Range,
VariadicCallType CallType) {
// FIXME: This mechanism should be abstracted to be less fragile and
// more efficient. For example, just map function ids to custom
// handlers.
// Printf and scanf checking.
bool HandledFormatString = false;
for (specific_attr_iterator<FormatAttr>
I = FDecl->specific_attr_begin<FormatAttr>(),
E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
if (CheckFormatArguments(*I, Args, NumArgs, IsMemberFunction, Loc, Range))
HandledFormatString = true;
// Refuse POD arguments that weren't caught by the format string
// checks above.
if (!HandledFormatString && CallType != VariadicDoesNotApply)
for (unsigned ArgIdx = NumProtoArgs; ArgIdx < NumArgs; ++ArgIdx)
variadicArgumentPODCheck(Args[ArgIdx], CallType);
i = FDecl->specific_attr_begin<FormatAttr>(),
e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
CheckFormatArguments(*i, TheCall);
}
for (specific_attr_iterator<NonNullAttr>
I = FDecl->specific_attr_begin<NonNullAttr>(),
E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
CheckNonNullArguments(*I, Args, Loc);
}
/// CheckConstructorCall - Check a constructor call for correctness and safety
/// properties not enforced by the C type system.
void Sema::CheckConstructorCall(FunctionDecl *FDecl, Expr **Args,
unsigned NumArgs,
const FunctionProtoType *Proto,
SourceLocation Loc) {
VariadicCallType CallType =
Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
checkCall(FDecl, Args, NumArgs, Proto->getNumArgs(),
/*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
}
/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
const FunctionProtoType *Proto) {
bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall);
VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
TheCall->getCallee());
unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
checkCall(FDecl, TheCall->getArgs(), TheCall->getNumArgs(), NumProtoArgs,
IsMemberFunction, TheCall->getRParenLoc(),
TheCall->getCallee()->getSourceRange(), CallType);
IdentifierInfo *FnInfo = FDecl->getIdentifier();
// None of the checks below are needed for functions that don't have
// simple names (e.g., C++ conversion functions).
if (!FnInfo)
return false;
i = FDecl->specific_attr_begin<NonNullAttr>(),
e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
CheckNonNullArguments(*i, TheCall->getArgs(),
TheCall->getCallee()->getLocStart());
}
unsigned CMId = FDecl->getMemoryFunctionKind();
if (CMId == 0)
@ -522,18 +464,25 @@ bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
Expr **Args, unsigned NumArgs) {
VariadicCallType CallType =
Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
for (specific_attr_iterator<FormatAttr>
i = Method->specific_attr_begin<FormatAttr>(),
e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
checkCall(Method, Args, NumArgs, Method->param_size(),
/*IsMemberFunction=*/false,
lbrac, Method->getSourceRange(), CallType);
CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
Method->getSourceRange());
}
// diagnose nonnull arguments.
for (specific_attr_iterator<NonNullAttr>
i = Method->specific_attr_begin<NonNullAttr>(),
e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
CheckNonNullArguments(*i, Args, lbrac);
}
return false;
}
bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
const FunctionProtoType *Proto) {
bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
const VarDecl *V = dyn_cast<VarDecl>(NDecl);
if (!V)
return false;
@ -542,14 +491,12 @@ bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
if (!Ty->isBlockPointerType())
return false;
VariadicCallType CallType =
Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
checkCall(NDecl, TheCall->getArgs(), TheCall->getNumArgs(),
NumProtoArgs, /*IsMemberFunction=*/false,
TheCall->getRParenLoc(),
TheCall->getCallee()->getSourceRange(), CallType);
// format string checking.
for (specific_attr_iterator<FormatAttr>
i = NDecl->specific_attr_begin<FormatAttr>(),
e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
CheckFormatArguments(*i, TheCall);
}
return false;
}
@ -1554,18 +1501,14 @@ bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
return false;
}
// Determine if an expression is a string literal or constant string.
// If this function returns false on the arguments to a function expecting a
// format string, we will usually need to emit a warning.
// True string literals are then checked by CheckFormatString.
Sema::StringLiteralCheckType
Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
// Handle i > 1 ? "x" : "y", recursively.
bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
unsigned NumArgs, bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg,
FormatStringType Type, bool inFunctionCall) {
tryAgain:
if (E->isTypeDependent() || E->isValueDependent())
return SLCT_NotALiteral;
return false;
E = E->IgnoreParenCasts();
@ -1574,26 +1517,18 @@ Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
// The behavior of printf and friends in this case is implementation
// dependent. Ideally if the format string cannot be null then
// it should have a 'nonnull' attribute in the function prototype.
return SLCT_CheckedLiteral;
return true;
switch (E->getStmtClass()) {
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass: {
// The expression is a literal if both sub-expressions were, and it was
// completely checked only if both sub-expressions were checked.
const AbstractConditionalOperator *C =
cast<AbstractConditionalOperator>(E);
StringLiteralCheckType Left =
checkFormatStringExpr(C->getTrueExpr(), Args, NumArgs,
HasVAListArg, format_idx, firstDataArg,
Type, inFunctionCall);
if (Left == SLCT_NotALiteral)
return SLCT_NotALiteral;
StringLiteralCheckType Right =
checkFormatStringExpr(C->getFalseExpr(), Args, NumArgs,
HasVAListArg, format_idx, firstDataArg,
Type, inFunctionCall);
return Left < Right ? Left : Right;
const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
format_idx, firstDataArg, Type,
inFunctionCall)
&& SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
format_idx, firstDataArg, Type,
inFunctionCall);
}
case Stmt::ImplicitCastExprClass: {
@ -1606,13 +1541,13 @@ Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
E = src;
goto tryAgain;
}
return SLCT_NotALiteral;
return false;
case Stmt::PredefinedExprClass:
// While __func__, etc., are technically not string literals, they
// cannot contain format specifiers and thus are not a security
// liability.
return SLCT_UncheckedLiteral;
return true;
case Stmt::DeclRefExprClass: {
const DeclRefExpr *DR = cast<DeclRefExpr>(E);
@ -1641,10 +1576,9 @@ Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
if (InitList->isStringLiteralInit())
Init = InitList->getInit(0)->IgnoreParenImpCasts();
}
return checkFormatStringExpr(Init, Args, NumArgs,
HasVAListArg, format_idx,
firstDataArg, Type,
/*inFunctionCall*/false);
return SemaCheckStringLiteral(Init, Args, NumArgs,
HasVAListArg, format_idx, firstDataArg,
Type, /*inFunctionCall*/false);
}
}
@ -1678,14 +1612,14 @@ Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
// We can't pass a 'scanf' string to a 'printf' function.
if (PVIndex == PVFormat->getFormatIdx() &&
Type == GetFormatStringType(PVFormat))
return SLCT_UncheckedLiteral;
return true;
}
}
}
}
}
return SLCT_NotALiteral;
return false;
}
case Stmt::CallExprClass:
@ -1699,22 +1633,22 @@ Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
--ArgIndex;
const Expr *Arg = CE->getArg(ArgIndex - 1);
return checkFormatStringExpr(Arg, Args, NumArgs,
HasVAListArg, format_idx, firstDataArg,
Type, inFunctionCall);
return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
format_idx, firstDataArg, Type,
inFunctionCall);
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
unsigned BuiltinID = FD->getBuiltinID();
if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
const Expr *Arg = CE->getArg(0);
return checkFormatStringExpr(Arg, Args, NumArgs,
HasVAListArg, format_idx,
firstDataArg, Type, inFunctionCall);
return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
format_idx, firstDataArg, Type,
inFunctionCall);
}
}
}
return SLCT_NotALiteral;
return false;
}
case Stmt::ObjCStringLiteralClass:
case Stmt::StringLiteralClass: {
@ -1728,14 +1662,14 @@ Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
if (StrE) {
CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
firstDataArg, Type, inFunctionCall);
return SLCT_CheckedLiteral;
return true;
}
return SLCT_NotALiteral;
return false;
}
default:
return SLCT_NotALiteral;
return false;
}
}
@ -1766,34 +1700,42 @@ Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
/// functions) for correct use of format strings.
/// Returns true if a format string has been fully checked.
bool Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
bool IsCXXMember = isa<CXXMemberCallExpr>(TheCall);
return CheckFormatArguments(Format, TheCall->getArgs(),
TheCall->getNumArgs(),
void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
bool IsCXXMember = false;
// The way the format attribute works in GCC, the implicit this argument
// of member functions is counted. However, it doesn't appear in our own
// lists, so decrement format_idx in that case.
IsCXXMember = isa<CXXMemberCallExpr>(TheCall);
CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
IsCXXMember, TheCall->getRParenLoc(),
TheCall->getCallee()->getSourceRange());
}
bool Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
unsigned NumArgs, bool IsCXXMember,
SourceLocation Loc, SourceRange Range) {
FormatStringInfo FSI;
if (getFormatStringInfo(Format, IsCXXMember, &FSI))
return CheckFormatArguments(Args, NumArgs, FSI.HasVAListArg, FSI.FormatIdx,
FSI.FirstDataArg, GetFormatStringType(Format),
Loc, Range);
return false;
bool HasVAListArg = Format->getFirstArg() == 0;
unsigned format_idx = Format->getFormatIdx() - 1;
unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
if (IsCXXMember) {
if (format_idx == 0)
return;
--format_idx;
if(firstDataArg != 0)
--firstDataArg;
}
CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
firstDataArg, GetFormatStringType(Format), Loc, Range);
}
bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
bool HasVAListArg, unsigned format_idx,
unsigned firstDataArg, FormatStringType Type,
SourceLocation Loc, SourceRange Range) {
// CHECK: printf/scanf-like function is called with no format string.
if (format_idx >= NumArgs) {
Diag(Loc, diag::warn_missing_format_string) << Range;
return false;
return;
}
const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
@ -1810,17 +1752,14 @@ bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
// C string (e.g. "%d")
// ObjC string uses the same format specifiers as C string, so we can use
// the same format string checking logic for both ObjC and C strings.
StringLiteralCheckType CT =
checkFormatStringExpr(OrigFormatExpr, Args, NumArgs, HasVAListArg,
format_idx, firstDataArg, Type);
if (CT != SLCT_NotALiteral)
// Literal format string found, check done!
return CT == SLCT_CheckedLiteral;
if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
format_idx, firstDataArg, Type))
return; // Literal format string found, check done!
// Strftime is particular as it always uses a single 'time' argument,
// so it is safe to pass a non-literal string.
if (Type == FST_Strftime)
return false;
return;
// Do not emit diag when the string param is a macro expansion and the
// format is either NSString or CFString. This is a hack to prevent
@ -1828,7 +1767,7 @@ bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
// which are usually used in place of NS and CF string literals.
if (Type == FST_NSString &&
SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
return false;
return;
// If there are no arguments specified, warn with -Wformat-security, otherwise
// warn only with -Wformat-nonliteral.
@ -1840,7 +1779,6 @@ bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
Diag(Args[format_idx]->getLocStart(),
diag::warn_format_nonliteral)
<< OrigFormatExpr->getSourceRange();
return false;
}
namespace {
@ -2200,10 +2138,6 @@ public:
bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
const char *startSpecifier,
unsigned specifierLen);
bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
const char *StartSpecifier,
unsigned SpecifierLen,
const Expr *E);
bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
const char *startSpecifier, unsigned specifierLen);
@ -2218,9 +2152,6 @@ public:
const analyze_printf::OptionalFlag &ignoredFlag,
const analyze_printf::OptionalFlag &flag,
const char *startSpecifier, unsigned specifierLen);
bool checkForCStrMembers(const analyze_printf::ArgTypeResult &ATR,
const Expr *E, const CharSourceRange &CSR);
};
}
@ -2338,64 +2269,6 @@ void CheckPrintfHandler::HandleIgnoredFlag(
getSpecifierRange(ignoredFlag.getPosition(), 1)));
}
// Determines if the specified is a C++ class or struct containing
// a member with the specified name and kind (e.g. a CXXMethodDecl named
// "c_str()").
template<typename MemberKind>
static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
const RecordType *RT = Ty->getAs<RecordType>();
llvm::SmallPtrSet<MemberKind*, 1> Results;
if (!RT)
return Results;
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
if (!RD)
return Results;
LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
Sema::LookupMemberName);
// We just need to include all members of the right kind turned up by the
// filter, at this point.
if (S.LookupQualifiedName(R, RT->getDecl()))
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
NamedDecl *decl = (*I)->getUnderlyingDecl();
if (MemberKind *FK = dyn_cast<MemberKind>(decl))
Results.insert(FK);
}
return Results;
}
// Check if a (w)string was passed when a (w)char* was needed, and offer a
// better diagnostic if so. ATR is assumed to be valid.
// Returns true when a c_str() conversion method is found.
bool CheckPrintfHandler::checkForCStrMembers(
const analyze_printf::ArgTypeResult &ATR, const Expr *E,
const CharSourceRange &CSR) {
typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
MethodSet Results =
CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
MI != ME; ++MI) {
const CXXMethodDecl *Method = *MI;
if (Method->getNumParams() == 0 &&
ATR.matchesType(S.Context, Method->getResultType())) {
// FIXME: Suggest parens if the expression needs them.
SourceLocation EndLoc =
S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
S.Diag(E->getLocStart(), diag::note_printf_c_str)
<< "c_str()"
<< FixItHint::CreateInsertion(EndLoc, ".c_str()");
return true;
}
}
return false;
}
bool
CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
&FS,
@ -2523,30 +2396,20 @@ CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
return false;
return checkFormatExpr(FS, startSpecifier, specifierLen,
getDataArg(argIndex));
}
bool
CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
const char *StartSpecifier,
unsigned SpecifierLen,
const Expr *E) {
using namespace analyze_format_string;
using namespace analyze_printf;
// Now type check the data expression that matches the
// format specifier.
const Expr *Ex = getDataArg(argIndex);
const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context,
ObjCContext);
if (ATR.isValid() && !ATR.matchesType(S.Context, E->getType())) {
if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
// Look through argument promotions for our error message's reported type.
// This includes the integral and floating promotions, but excludes array
// and function pointer decay; seeing that an argument intended to be a
// string has type 'char [6]' is probably more confusing than 'char *'.
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex)) {
if (ICE->getCastKind() == CK_IntegralCast ||
ICE->getCastKind() == CK_FloatingCast) {
E = ICE->getSubExpr();
Ex = ICE->getSubExpr();
// Check if we didn't match because of an implicit cast from a 'char'
// or 'short' to an 'int'. This is done because printf is a varargs
@ -2554,7 +2417,7 @@ CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
if (ICE->getType() == S.Context.IntTy ||
ICE->getType() == S.Context.UnsignedIntTy) {
// All further checking is done on the subexpression.
if (ATR.matchesType(S.Context, E->getType()))
if (ATR.matchesType(S.Context, Ex->getType()))
return true;
}
}
@ -2562,7 +2425,7 @@ CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
// We may be able to offer a FixItHint if it is a supported type.
PrintfSpecifier fixedFS = FS;
bool success = fixedFS.fixType(E->getType(), S.getLangOpts(),
bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
S.Context, ObjCContext);
if (success) {
@ -2573,38 +2436,24 @@ CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
EmitFormatDiagnostic(
S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
<< ATR.getRepresentativeTypeName(S.Context) << E->getType()
<< E->getSourceRange(),
E->getLocStart(),
<< ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
<< Ex->getSourceRange(),
Ex->getLocStart(),
/*IsStringLocation*/false,
getSpecifierRange(StartSpecifier, SpecifierLen),
getSpecifierRange(startSpecifier, specifierLen),
FixItHint::CreateReplacement(
getSpecifierRange(StartSpecifier, SpecifierLen),
getSpecifierRange(startSpecifier, specifierLen),
os.str()));
} else {
const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
SpecifierLen);
// Since the warning for passing non-POD types to variadic functions
// was deferred until now, we emit a warning for non-POD
// arguments here.
if (S.isValidVarArgType(E->getType()) == Sema::VAK_Invalid) {
EmitFormatDiagnostic(
S.PDiag(diag::warn_non_pod_vararg_with_format_string)
<< S.getLangOpts().CPlusPlus0x
<< E->getType()
<< ATR.getRepresentativeTypeName(S.Context)
<< CSR
<< E->getSourceRange(),
E->getLocStart(), /*IsStringLocation*/false, CSR);
checkForCStrMembers(ATR, E, CSR);
} else
}
else {
EmitFormatDiagnostic(
S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
<< ATR.getRepresentativeTypeName(S.Context) << E->getType()
<< CSR
<< E->getSourceRange(),
E->getLocStart(), /*IsStringLocation*/false, CSR);
<< ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
<< getSpecifierRange(startSpecifier, specifierLen)
<< Ex->getSourceRange(),
Ex->getLocStart(),
/*IsStringLocation*/false,
getSpecifierRange(startSpecifier, specifierLen));
}
}

Просмотреть файл

@ -9028,6 +9028,13 @@ Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
unsigned NumExprs = ExprArgs.size();
Expr **Exprs = (Expr **)ExprArgs.release();
for (specific_attr_iterator<NonNullAttr>
i = Constructor->specific_attr_begin<NonNullAttr>(),
e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
const NonNullAttr *NonNull = *i;
CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
}
MarkFunctionReferenced(ConstructLoc, Constructor);
return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
Constructor, Elidable, Exprs, NumExprs,
@ -9121,8 +9128,7 @@ Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
Proto, Loc);
// FIXME: Missing call to CheckFunctionCall or equivalent
return Invalid;
}

Просмотреть файл

@ -598,59 +598,12 @@ ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
return Owned(E);
}
/// Determine the degree of POD-ness for an expression.
/// Incomplete types are considered POD, since this check can be performed
/// when we're in an unevaluated context.
Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
if (Ty->isIncompleteType() || Ty.isCXX98PODType(Context))
return VAK_Valid;
// C++0x [expr.call]p7:
// Passing a potentially-evaluated argument of class type (Clause 9)
// having a non-trivial copy constructor, a non-trivial move constructor,
// or a non-trivial destructor, with no corresponding parameter,
// is conditionally-supported with implementation-defined semantics.
if (getLangOpts().CPlusPlus0x && !Ty->isDependentType())
if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
if (Record->hasTrivialCopyConstructor() &&
Record->hasTrivialMoveConstructor() &&
Record->hasTrivialDestructor())
return VAK_ValidInCXX11;
if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
return VAK_Valid;
return VAK_Invalid;
}
bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
// Don't allow one to pass an Objective-C interface to a vararg.
const QualType & Ty = E->getType();
// Complain about passing non-POD types through varargs.
switch (isValidVarArgType(Ty)) {
case VAK_Valid:
break;
case VAK_ValidInCXX11:
DiagRuntimeBehavior(E->getLocStart(), 0,
PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
<< E->getType() << CT);
break;
case VAK_Invalid:
return DiagRuntimeBehavior(E->getLocStart(), 0,
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
<< getLangOpts().CPlusPlus0x << Ty << CT);
}
// c++ rules are enforced elsewhere.
return false;
}
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
/// will warn if the resulting type is not a POD type, and rejects ObjC
/// interfaces passed by value.
ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
FunctionDecl *FDecl) {
const QualType &Ty = E->getType();
if (const BuiltinType *PlaceholderTy = Ty->getAsPlaceholderType()) {
if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
// Strip the unbridged-cast placeholder expression off, if applicable.
if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
(CT == VariadicMethod ||
@ -671,29 +624,61 @@ ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
return ExprError();
E = ExprRes.take();
if (Ty->isObjCObjectType() &&
// Don't allow one to pass an Objective-C interface to a vararg.
if (E->getType()->isObjCObjectType() &&
DiagRuntimeBehavior(E->getLocStart(), 0,
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
<< Ty << CT))
<< E->getType() << CT))
return ExprError();
// Diagnostics regarding non-POD argument types are
// emitted along with format string checking in Sema::CheckFunctionCall().
if (isValidVarArgType(Ty) == VAK_Invalid) {
// Complain about passing non-POD types through varargs. However, don't
// perform this check for incomplete types, which we can get here when we're
// in an unevaluated context.
if (!E->getType()->isIncompleteType() &&
!E->getType().isCXX98PODType(Context)) {
// C++0x [expr.call]p7:
// Passing a potentially-evaluated argument of class type (Clause 9)
// having a non-trivial copy constructor, a non-trivial move constructor,
// or a non-trivial destructor, with no corresponding parameter,
// is conditionally-supported with implementation-defined semantics.
bool TrivialEnough = false;
if (getLangOpts().CPlusPlus0x && !E->getType()->isDependentType()) {
if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
if (Record->hasTrivialCopyConstructor() &&
Record->hasTrivialMoveConstructor() &&
Record->hasTrivialDestructor()) {
DiagRuntimeBehavior(E->getLocStart(), 0,
PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
<< E->getType() << CT);
TrivialEnough = true;
}
}
}
if (!TrivialEnough &&
getLangOpts().ObjCAutoRefCount &&
E->getType()->isObjCLifetimeType())
TrivialEnough = true;
if (TrivialEnough) {
// Nothing to diagnose. This is okay.
} else if (DiagRuntimeBehavior(E->getLocStart(), 0,
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
<< getLangOpts().CPlusPlus0x << E->getType()
<< CT)) {
// Turn this into a trap.
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId Name;
Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
E->getLocStart());
ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
Name, true, false);
ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
true, false);
if (TrapFn.isInvalid())
return ExprError();
ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
E->getLocStart(), MultiExprArg(),
E->getLocEnd());
ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
MultiExprArg(), E->getLocEnd());
if (Call.isInvalid())
return ExprError();
@ -701,9 +686,10 @@ ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
Call.get(), E);
if (Comma.isInvalid())
return ExprError();
return Comma.get();
E = Comma.get();
}
}
// c++ rules are enforced elsewhere.
if (!getLangOpts().CPlusPlus &&
RequireCompleteType(E->getExprLoc(), E->getType(),
diag::err_call_incomplete_argument))
@ -3437,25 +3423,6 @@ ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
}
Sema::VariadicCallType
Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
Expr *Fn) {
if (Proto && Proto->isVariadic()) {
if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
return VariadicConstructor;
else if (Fn && Fn->getType()->isBlockPointerType())
return VariadicBlock;
else if (FDecl) {
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
if (Method->isInstance())
return VariadicMethod;
return VariadicFunction;
}
}
return VariadicDoesNotApply;
}
/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
@ -3547,8 +3514,12 @@ Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
}
}
SmallVector<Expr *, 8> AllArgs;
VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
VariadicCallType CallType =
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
if (Fn->getType()->isBlockPointerType())
CallType = VariadicBlock; // Block
else if (isa<MemberExpr>(Fn))
CallType = VariadicMethod;
Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
Proto, 0, Args, NumArgs, AllArgs, CallType);
if (Invalid)
@ -3637,6 +3608,7 @@ bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
// If this is a variadic call, handle args passed through "...".
if (CallType != VariadicDoesNotApply) {
// Assume that extern "C" functions with variadic arguments that
// return __unknown_anytype aren't *really* variadic.
if (Proto->getResultType() == Context.UnknownAnyTy &&
@ -3974,8 +3946,7 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
TheCall->setType(FuncT->getCallResultType(Context));
TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
if (Proto) {
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
RParenLoc, IsExecConfig))
return ExprError();
@ -3987,7 +3958,8 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
// on our knowledge of the function definition.
const FunctionDecl *Def = 0;
if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
Proto = Def->getType()->getAs<FunctionProtoType>();
const FunctionProtoType *Proto
= Def->getType()->getAs<FunctionProtoType>();
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
@ -4045,13 +4017,13 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
// Do special checking on direct calls to functions.
if (FDecl) {
if (CheckFunctionCall(FDecl, TheCall, Proto))
if (CheckFunctionCall(FDecl, TheCall))
return ExprError();
if (BuiltinID)
return CheckBuiltinFunctionCall(BuiltinID, TheCall);
} else if (NDecl) {
if (CheckBlockCall(NDecl, TheCall, Proto))
if (CheckBlockCall(NDecl, TheCall))
return ExprError();
}

Просмотреть файл

@ -10720,7 +10720,7 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
if (CheckFunctionCall(Method, TheCall, Proto))
if (CheckFunctionCall(Method, TheCall))
return ExprError();
if ((isa<CXXConstructorDecl>(CurContext) ||
@ -11028,7 +11028,7 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
if (CheckFunctionCall(Method, TheCall, Proto))
if (CheckFunctionCall(Method, TheCall))
return true;
return MaybeBindToTemporary(TheCall);
@ -11208,7 +11208,7 @@ ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
return ExprError();
if (CheckFunctionCall(FD, UDL, NULL))
if (CheckFunctionCall(FD, UDL))
return ExprError();
return MaybeBindToTemporary(UDL);

Просмотреть файл

@ -1,18 +0,0 @@
// RUN: %clang_cc1 -fsyntax-only -fblocks -Wformat -verify %s -Wno-error=non-pod-varargs
int (^block) (int, const char *,...) __attribute__((__format__(__printf__,2,3))) = ^ __attribute__((__format__(__printf__,2,3))) (int arg, const char *format,...) {return 5;};
class HasNoCStr {
const char *str;
public:
HasNoCStr(const char *s): str(s) { }
const char *not_c_str() {return str;}
};
void test_block() {
const char str[] = "test";
HasNoCStr hncs(str);
int n = 4;
block(n, "%s %d", str, n); // no-warning
block(n, "%s %s", hncs, n); // expected-warning{{cannot pass non-POD object of type 'HasNoCStr' to variadic function; expected type from format string was 'char *'}} expected-warning{{format specifies type 'char *' but the argument has type 'int'}}
}

Просмотреть файл

@ -1,53 +0,0 @@
// RUN: %clang_cc1 -fsyntax-only -Wformat -verify %s -Wno-error=non-pod-varargs
#include <stdarg.h>
extern "C" {
extern int printf(const char *restrict, ...);
extern int sprintf(char *, const char *restrict, ...);
}
class HasCStr {
const char *str;
public:
HasCStr(const char *s): str(s) { }
const char *c_str() {return str;}
};
class HasNoCStr {
const char *str;
public:
HasNoCStr(const char *s): str(s) { }
const char *not_c_str() {return str;}
};
extern const char extstr[16];
void pod_test() {
char str[] = "test";
char dest[32];
char formatString[] = "non-const %s %s";
HasCStr hcs(str);
HasNoCStr hncs(str);
int n = 10;
printf("%d: %s\n", n, hcs.c_str());
printf("%d: %s\n", n, hcs); // expected-warning{{cannot pass non-POD object of type 'HasCStr' to variadic function; expected type from format string was 'char *'}} expected-note{{did you mean to call the c_str() method?}}
printf("%d: %s\n", n, hncs); // expected-warning{{cannot pass non-POD object of type 'HasNoCStr' to variadic function; expected type from format string was 'char *'}}
sprintf(str, "%d: %s", n, hcs); // expected-warning{{cannot pass non-POD object of type 'HasCStr' to variadic function; expected type from format string was 'char *'}} expected-note{{did you mean to call the c_str() method?}}
printf(formatString, hcs, hncs); // expected-warning{{cannot pass object of non-POD type 'HasCStr' through variadic function}} expected-warning{{cannot pass object of non-POD type 'HasNoCStr' through variadic function}}
printf(extstr, hcs, n); // expected-warning{{cannot pass object of non-POD type 'HasCStr' through variadic function}}
}
struct Printf {
Printf();
Printf(const Printf&);
Printf(const char *,...) __attribute__((__format__(__printf__,2,3)));
};
void constructor_test() {
const char str[] = "test";
HasCStr hcs(str);
Printf p("%s %d %s", str, 10, 10); // expected-warning {{format specifies type 'char *' but the argument has type 'int'}}
Printf q("%s %d", hcs, 10); // expected-warning {{cannot pass non-POD object of type 'HasCStr' to variadic function; expected type from format string was 'char *'}} expected-note{{did you mean to call the c_str() method?}}
}