зеркало из https://github.com/microsoft/clang-1.git
[analyzer] Translate "a != b" to "(b - a) != 0" in the constraint manager.
Canonicalizing these two forms allows us to better model containers like std::vector, which use "m_start != m_finish" to implement empty() but "m_finish - m_start" to implement size(). The analyzer should have a consistent interpretation of these two symbolic expressions, even though it's not properly reasoning about either one yet. The other unfortunate thing is that while the size() expression will only ever be written "m_finish - m_start", the comparison may be written "m_finish == m_start" or "m_start == m_finish". Right now the analyzer does not attempt to canonicalize those two expressions, since it doesn't know which length expression to pick. Doing this correctly will probably require implementing unary minus as a new SymExpr kind (<rdar://problem/12351075>). For now, the analyzer inverts the order of arguments in the comparison to build the subtraction, on the assumption that "begin() != end()" is written more often than "end() != begin()". This is purely speculation. <rdar://problem/13239003> git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@177801 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Родитель
8958efacf8
Коммит
78114a58f8
|
@ -285,8 +285,8 @@ namespace {
|
|||
class RangeConstraintManager : public SimpleConstraintManager{
|
||||
RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
|
||||
public:
|
||||
RangeConstraintManager(SubEngine *subengine, BasicValueFactory &BVF)
|
||||
: SimpleConstraintManager(subengine, BVF) {}
|
||||
RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
|
||||
: SimpleConstraintManager(subengine, SVB) {}
|
||||
|
||||
ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
|
||||
const llvm::APSInt& Int,
|
||||
|
@ -328,7 +328,7 @@ private:
|
|||
|
||||
ConstraintManager *
|
||||
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
|
||||
return new RangeConstraintManager(Eng, StMgr.getBasicVals());
|
||||
return new RangeConstraintManager(Eng, StMgr.getSValBuilder());
|
||||
}
|
||||
|
||||
const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
|
||||
|
|
|
@ -49,6 +49,11 @@ bool SimpleConstraintManager::canReasonAbout(SVal X) const {
|
|||
}
|
||||
}
|
||||
|
||||
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
|
||||
if (SSE->getOpcode() == BO_EQ || SSE->getOpcode() == BO_NE)
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -164,8 +169,6 @@ ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
|
|||
return assumeAuxForSymbol(state, sym, Assumption);
|
||||
}
|
||||
|
||||
BasicValueFactory &BasicVals = getBasicVals();
|
||||
|
||||
switch (Cond.getSubKind()) {
|
||||
default:
|
||||
llvm_unreachable("'Assume' not implemented for this NonLoc");
|
||||
|
@ -180,26 +183,43 @@ ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
|
|||
return assumeAuxForSymbol(state, sym, Assumption);
|
||||
|
||||
// Handle symbolic expression.
|
||||
} else {
|
||||
} else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym)) {
|
||||
// We can only simplify expressions whose RHS is an integer.
|
||||
const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
|
||||
if (!SE)
|
||||
return assumeAuxForSymbol(state, sym, Assumption);
|
||||
|
||||
BinaryOperator::Opcode op = SE->getOpcode();
|
||||
// Implicitly compare non-comparison expressions to 0.
|
||||
if (!BinaryOperator::isComparisonOp(op)) {
|
||||
QualType T = SE->getType();
|
||||
const llvm::APSInt &zero = BasicVals.getValue(0, T);
|
||||
op = (Assumption ? BO_NE : BO_EQ);
|
||||
return assumeSymRel(state, SE, op, zero);
|
||||
}
|
||||
// From here on out, op is the real comparison we'll be testing.
|
||||
if (!Assumption)
|
||||
op = NegateComparison(op);
|
||||
if (BinaryOperator::isComparisonOp(op)) {
|
||||
if (!Assumption)
|
||||
op = NegateComparison(op);
|
||||
|
||||
return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
|
||||
return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
|
||||
}
|
||||
|
||||
} else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(sym)) {
|
||||
BinaryOperator::Opcode Op = SSE->getOpcode();
|
||||
|
||||
// Translate "a != b" to "(b - a) != 0".
|
||||
// We invert the order of the operands as a heuristic for how loop
|
||||
// conditions are usually written ("begin != end") as compared to length
|
||||
// calculations ("end - begin"). The more correct thing to do would be to
|
||||
// canonicalize "a - b" and "b - a", which would allow us to treat
|
||||
// "a != b" and "b != a" the same.
|
||||
if (BinaryOperator::isEqualityOp(Op)) {
|
||||
SymbolManager &SymMgr = getSymbolManager();
|
||||
|
||||
assert(Loc::isLocType(SSE->getLHS()->getType()));
|
||||
assert(Loc::isLocType(SSE->getRHS()->getType()));
|
||||
QualType DiffTy = SymMgr.getContext().getPointerDiffType();
|
||||
SymbolRef Subtraction = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
|
||||
SSE->getLHS(), DiffTy);
|
||||
|
||||
Assumption ^= (SSE->getOpcode() == BO_EQ);
|
||||
return assumeAuxForSymbol(state, Subtraction, Assumption);
|
||||
}
|
||||
}
|
||||
|
||||
// If we get here, there's nothing else we can do but treat the symbol as
|
||||
// opaque.
|
||||
return assumeAuxForSymbol(state, sym, Assumption);
|
||||
}
|
||||
|
||||
case nonloc::ConcreteIntKind: {
|
||||
|
|
|
@ -23,10 +23,10 @@ namespace ento {
|
|||
|
||||
class SimpleConstraintManager : public ConstraintManager {
|
||||
SubEngine *SU;
|
||||
BasicValueFactory &BVF;
|
||||
SValBuilder &SVB;
|
||||
public:
|
||||
SimpleConstraintManager(SubEngine *subengine, BasicValueFactory &BV)
|
||||
: SU(subengine), BVF(BV) {}
|
||||
SimpleConstraintManager(SubEngine *subengine, SValBuilder &SB)
|
||||
: SU(subengine), SVB(SB) {}
|
||||
virtual ~SimpleConstraintManager();
|
||||
|
||||
//===------------------------------------------------------------------===//
|
||||
|
@ -81,7 +81,8 @@ protected:
|
|||
// Internal implementation.
|
||||
//===------------------------------------------------------------------===//
|
||||
|
||||
BasicValueFactory &getBasicVals() const { return BVF; }
|
||||
BasicValueFactory &getBasicVals() const { return SVB.getBasicValueFactory(); }
|
||||
SymbolManager &getSymbolManager() const { return SVB.getSymbolManager(); }
|
||||
|
||||
bool canReasonAbout(SVal X) const;
|
||||
|
||||
|
|
|
@ -179,3 +179,60 @@ void use_symbols(int *lhs, int *rhs) {
|
|||
return;
|
||||
clang_analyzer_eval((lhs - rhs) == 5); // expected-warning{{TRUE}}
|
||||
}
|
||||
|
||||
void equal_implies_zero(int *lhs, int *rhs) {
|
||||
clang_analyzer_eval(lhs == rhs); // expected-warning{{UNKNOWN}}
|
||||
if (lhs == rhs) {
|
||||
clang_analyzer_eval(lhs != rhs); // expected-warning{{FALSE}}
|
||||
clang_analyzer_eval((rhs - lhs) == 0); // expected-warning{{TRUE}}
|
||||
return;
|
||||
}
|
||||
clang_analyzer_eval(lhs == rhs); // expected-warning{{FALSE}}
|
||||
clang_analyzer_eval(lhs != rhs); // expected-warning{{TRUE}}
|
||||
clang_analyzer_eval((rhs - lhs) == 0); // expected-warning{{FALSE}}
|
||||
}
|
||||
|
||||
void zero_implies_equal(int *lhs, int *rhs) {
|
||||
clang_analyzer_eval((rhs - lhs) == 0); // expected-warning{{UNKNOWN}}
|
||||
if ((rhs - lhs) == 0) {
|
||||
clang_analyzer_eval(lhs != rhs); // expected-warning{{FALSE}}
|
||||
clang_analyzer_eval(lhs == rhs); // expected-warning{{TRUE}}
|
||||
return;
|
||||
}
|
||||
clang_analyzer_eval((rhs - lhs) == 0); // expected-warning{{FALSE}}
|
||||
clang_analyzer_eval(lhs == rhs); // expected-warning{{FALSE}}
|
||||
clang_analyzer_eval(lhs != rhs); // expected-warning{{TRUE}}
|
||||
}
|
||||
|
||||
//-------------------------------
|
||||
// False positives
|
||||
//-------------------------------
|
||||
|
||||
void zero_implies_reversed_equal(int *lhs, int *rhs) {
|
||||
clang_analyzer_eval((rhs - lhs) == 0); // expected-warning{{UNKNOWN}}
|
||||
if ((rhs - lhs) == 0) {
|
||||
// FIXME: Should be FALSE.
|
||||
clang_analyzer_eval(rhs != lhs); // expected-warning{{UNKNOWN}}
|
||||
// FIXME: Should be TRUE.
|
||||
clang_analyzer_eval(rhs == lhs); // expected-warning{{UNKNOWN}}
|
||||
return;
|
||||
}
|
||||
clang_analyzer_eval((rhs - lhs) == 0); // expected-warning{{FALSE}}
|
||||
// FIXME: Should be FALSE.
|
||||
clang_analyzer_eval(rhs == lhs); // expected-warning{{UNKNOWN}}
|
||||
// FIXME: Should be TRUE.
|
||||
clang_analyzer_eval(rhs != lhs); // expected-warning{{UNKNOWN}}
|
||||
}
|
||||
|
||||
void canonical_equal(int *lhs, int *rhs) {
|
||||
clang_analyzer_eval(lhs == rhs); // expected-warning{{UNKNOWN}}
|
||||
if (lhs == rhs) {
|
||||
// FIXME: Should be TRUE.
|
||||
clang_analyzer_eval(rhs == lhs); // expected-warning{{UNKNOWN}}
|
||||
return;
|
||||
}
|
||||
clang_analyzer_eval(lhs == rhs); // expected-warning{{FALSE}}
|
||||
|
||||
// FIXME: Should be FALSE.
|
||||
clang_analyzer_eval(rhs == lhs); // expected-warning{{UNKNOWN}}
|
||||
}
|
||||
|
|
Загрузка…
Ссылка в новой задаче