Restructure how we interpret block-literal declarators. Correctly handle

the case where we pick up block arguments from a typedef.  Save the block
signature as it was written, and preserve same through PCH.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@105466 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
John McCall 2010-06-04 11:21:44 +00:00
Родитель ea7b4880bc
Коммит 82dc00948f
6 изменённых файлов: 86 добавлений и 78 удалений

Просмотреть файл

@ -2127,11 +2127,13 @@ class BlockDecl : public Decl, public DeclContext {
unsigned NumParams;
Stmt *Body;
TypeSourceInfo *SignatureAsWritten;
protected:
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
: Decl(Block, DC, CaretLoc), DeclContext(Block),
IsVariadic(false), ParamInfo(0), NumParams(0), Body(0) {}
IsVariadic(false), ParamInfo(0), NumParams(0), Body(0),
SignatureAsWritten(0) {}
virtual ~BlockDecl();
virtual void Destroy(ASTContext& C);
@ -2148,6 +2150,9 @@ public:
Stmt *getBody() const { return (Stmt*) Body; }
void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
// Iterator access to formal parameters.
unsigned param_size() const { return getNumParams(); }
typedef ParmVarDecl **param_iterator;

Просмотреть файл

@ -462,6 +462,7 @@ void PCHDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) {
void PCHDeclReader::VisitBlockDecl(BlockDecl *BD) {
VisitDecl(BD);
BD->setBody(cast_or_null<CompoundStmt>(Reader.ReadDeclStmt()));
BD->setSignatureAsWritten(Reader.GetTypeSourceInfo(Record, Idx));
unsigned NumParams = Record[Idx++];
llvm::SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);

Просмотреть файл

@ -471,6 +471,7 @@ void PCHDeclWriter::VisitFileScopeAsmDecl(FileScopeAsmDecl *D) {
void PCHDeclWriter::VisitBlockDecl(BlockDecl *D) {
VisitDecl(D);
Writer.AddStmt(D->getBody());
Writer.AddTypeSourceInfo(D->getSignatureAsWritten(), Record);
Record.push_back(D->param_size());
for (FunctionDecl::param_iterator P = D->param_begin(), PEnd = D->param_end();
P != PEnd; ++P)

Просмотреть файл

@ -841,6 +841,9 @@ public:
bool &OverloadableAttrRequired);
void CheckMain(FunctionDecl *FD);
virtual DeclPtrTy ActOnParamDeclarator(Scope *S, Declarator &D);
ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
SourceLocation Loc,
QualType T);
ParmVarDecl *CheckParameter(DeclContext *DC,
TypeSourceInfo *TSInfo, QualType T,
IdentifierInfo *Name,

Просмотреть файл

@ -3272,14 +3272,8 @@ Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
// Synthesize a parameter for each argument type.
for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
AE = FT->arg_type_end(); AI != AE; ++AI) {
ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
D.getIdentifierLoc(), 0,
*AI,
Context.getTrivialTypeSourceInfo(*AI,
D.getIdentifierLoc()),
VarDecl::None,
VarDecl::None, 0);
Param->setImplicit();
ParmVarDecl *Param =
BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
Params.push_back(Param);
}
} else {
@ -4331,6 +4325,18 @@ Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
return DeclPtrTy::make(New);
}
/// \brief Synthesizes a variable for a parameter arising from a
/// typedef.
ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
SourceLocation Loc,
QualType T) {
ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
T, Context.getTrivialTypeSourceInfo(T, Loc),
VarDecl::None, VarDecl::None, 0);
Param->setImplicit();
return Param;
}
ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
TypeSourceInfo *TSInfo, QualType T,
IdentifierInfo *Name,

Просмотреть файл

@ -6976,62 +6976,47 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
BlockScopeInfo *CurBlock = getCurBlock();
if (ParamInfo.getNumTypeObjects() == 0
|| ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
if (T->isArrayType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_block_returns_array);
return;
}
// The parameter list is optional, if there was none, assume ().
if (!T->isFunctionType())
T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0,
FunctionType::ExtInfo());
TypeSourceInfo *Sig = 0;
QualType T = GetTypeForDeclarator(ParamInfo, CurScope, &Sig);
CurBlock->TheDecl->setSignatureAsWritten(Sig);
QualType RetTy;
if (const FunctionType *Fn = T->getAs<FunctionType>()) {
RetTy = Fn->getResultType();
CurBlock->hasPrototype = isa<FunctionProtoType>(Fn);
CurBlock->isVariadic =
!isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
} else {
RetTy = T;
CurBlock->hasPrototype = true;
CurBlock->isVariadic = false;
// Check for a valid sentinel attribute on this block.
if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
}
QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
}
// Do not allow returning a objc interface by-value.
if (RetTy->isObjCObjectType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
return;
}
CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
CurBlock->ReturnType = RetTy;
// Don't allow returning an array by value.
if (RetTy->isArrayType()) {
Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
return;
}
// Analyze arguments to block.
assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"Not a function declarator!");
DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
// Don't allow returning a objc interface by value.
if (RetTy->isObjCObjectType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
return;
}
CurBlock->hasPrototype = FTI.hasPrototype;
CurBlock->isVariadic = true;
// Context.DependentTy is used as a placeholder for a missing block
// return type.
if (RetTy != Context.DependentTy)
CurBlock->ReturnType = RetTy;
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
// no arguments, not a function that takes a single void argument.
if (FTI.hasPrototype &&
FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
(!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
// empty arg list, don't push any params.
CurBlock->isVariadic = false;
} else if (FTI.hasPrototype) {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
// Push block parameters from the declarator if we had them.
if (isa<FunctionProtoType>(T)) {
FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
ParmVarDecl *Param = TL.getArg(I);
if (Param->getIdentifier() == 0 &&
!Param->isImplicit() &&
!Param->isInvalidDecl() &&
@ -7039,13 +7024,39 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
CurBlock->Params.push_back(Param);
}
CurBlock->isVariadic = FTI.isVariadic;
// Fake up parameter variables if we have a typedef, like
// ^ fntype { ... }
} else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
for (FunctionProtoType::arg_type_iterator
I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
ParmVarDecl *Param =
BuildParmVarDeclForTypedef(CurBlock->TheDecl,
ParamInfo.getSourceRange().getBegin(),
*I);
CurBlock->Params.push_back(Param);
}
}
CurBlock->TheDecl->setParams(CurBlock->Params.data(),
CurBlock->Params.size());
CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
// Set the parmaeters on the block decl.
if (!CurBlock->Params.empty())
CurBlock->TheDecl->setParams(CurBlock->Params.data(),
CurBlock->Params.size());
// Finally we can process decl attributes.
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
if (!CurBlock->isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
}
// Put the parameter variables in scope. We can bail out immediately
// if we don't have any.
if (CurBlock->Params.empty())
return;
bool ShouldCheckShadow =
Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
@ -7061,25 +7072,6 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
PushOnScopeChains(*AI, CurBlock->TheScope);
}
}
// Check for a valid sentinel attribute on this block.
if (!CurBlock->isVariadic &&
CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
}
// Analyze the return type.
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
QualType RetTy = T->getAs<FunctionType>()->getResultType();
// Do not allow returning a objc interface by-value.
if (RetTy->isObjCObjectType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
} else if (!RetTy->isDependentType())
CurBlock->ReturnType = RetTy;
}
/// ActOnBlockError - If there is an error parsing a block, this callback