split node splitting from interior node restructuring.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@49608 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2008-04-13 08:22:30 +00:00
Родитель 50b3674167
Коммит b169e903c5
1 изменённых файлов: 61 добавлений и 37 удалений

Просмотреть файл

@ -56,6 +56,14 @@ namespace {
};
} // end anonymous namespace
struct InsertResult {
DeltaTreeNode *LHS, *RHS;
SourceDelta Split;
InsertResult() : LHS(0) {}
};
namespace {
/// DeltaTreeNode - The common part of all nodes.
///
@ -85,7 +93,7 @@ namespace {
int FullDelta;
public:
DeltaTreeNode(bool isLeaf = true)
: NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
: NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
bool isLeaf() const { return IsLeaf; }
int getFullDelta() const { return FullDelta; }
@ -101,6 +109,9 @@ namespace {
return Values[i];
}
void DoSplit(InsertResult &InsertRes);
/// AddDeltaNonFull - Add a delta to this tree and/or it's children, knowing
/// that this node is not currently full.
void AddDeltaNonFull(unsigned FileIndex, int Delta);
@ -238,36 +249,8 @@ void DeltaTreeInteriorNode::SplitChild(unsigned ChildNo) {
DeltaTreeNode *Child = getChild(ChildNo);
assert(!isFull() && Child->isFull() && "Inconsistent constraints");
// Since the child is full, it contains 2*WidthFactor-1 values. We move
// the first 'WidthFactor-1' values to the LHS child (which we leave in the
// original child), propagate one value up into us, and move the last
// 'WidthFactor-1' values into thew RHS child.
// Create the new child node.
DeltaTreeNode *NewNode;
if (DeltaTreeInteriorNode *CIN = dyn_cast<DeltaTreeInteriorNode>(Child)) {
// If the child is an interior node, also move over 'WidthFactor' grand
// children into the new node.
NewNode = new DeltaTreeInteriorNode();
memcpy(&((DeltaTreeInteriorNode*)NewNode)->Children[0],
&CIN->Children[WidthFactor],
WidthFactor*sizeof(CIN->Children[0]));
} else {
// Just create the child node.
NewNode = new DeltaTreeNode();
}
// Move over the last 'WidthFactor-1' values from Child to NewNode.
memcpy(&NewNode->Values[0], &Child->Values[WidthFactor],
(WidthFactor-1)*sizeof(Child->Values[0]));
// Decrease the number of values in the two children.
NewNode->NumValuesUsed = Child->NumValuesUsed = WidthFactor-1;
// Recompute the two children's full delta. Our delta hasn't changed, but
// their delta has.
NewNode->RecomputeFullDeltaLocally();
Child->RecomputeFullDeltaLocally();
InsertResult SplitRes;
Child->DoSplit(SplitRes);
// Now that we have two nodes and a new element, insert the median value
// into ourself by moving all the later values/children down, then inserting
@ -275,15 +258,55 @@ void DeltaTreeInteriorNode::SplitChild(unsigned ChildNo) {
if (getNumValuesUsed() != ChildNo)
memmove(&Children[ChildNo+2], &Children[ChildNo+1],
(getNumValuesUsed()-ChildNo)*sizeof(Children[0]));
Children[ChildNo+1] = NewNode;
Children[ChildNo] = SplitRes.LHS;
Children[ChildNo+1] = SplitRes.RHS;
if (getNumValuesUsed() != ChildNo)
memmove(&Values[ChildNo+1], &Values[ChildNo],
(getNumValuesUsed()-ChildNo)*sizeof(Values[0]));
Values[ChildNo] = Child->Values[WidthFactor-1];
Values[ChildNo] = SplitRes.Split;
++NumValuesUsed;
}
void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
assert(isFull() && "Why split a non-full node?");
// Since this node is full, it contains 2*WidthFactor-1 values. We move
// the first 'WidthFactor-1' values to the LHS child (which we leave in this
// node), propagate one value up, and move the last 'WidthFactor-1' values
// into the RHS child.
// Create the new child node.
DeltaTreeNode *NewNode;
if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
// If this is an interior node, also move over 'WidthFactor' children
// into the new node.
DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
memcpy(&New->Children[0], &IN->Children[WidthFactor],
WidthFactor*sizeof(IN->Children[0]));
NewNode = New;
} else {
// Just create the new leaf node.
NewNode = new DeltaTreeNode();
}
// Move over the last 'WidthFactor-1' values from here to NewNode.
memcpy(&NewNode->Values[0], &Values[WidthFactor],
(WidthFactor-1)*sizeof(Values[0]));
// Decrease the number of values in the two nodes.
NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
// Recompute the two nodes' full delta.
NewNode->RecomputeFullDeltaLocally();
RecomputeFullDeltaLocally();
InsertRes.LHS = this;
InsertRes.RHS = NewNode;
InsertRes.Split = Values[WidthFactor-1];
}
//===----------------------------------------------------------------------===//
// DeltaTree Implementation
@ -406,16 +429,17 @@ int DeltaTree::getDeltaAt(unsigned FileIndex) const {
/// into the current DeltaTree at offset FileIndex.
void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
assert(Delta && "Adding a noop?");
DeltaTreeNode *MyRoot = getRoot(Root);
// If the root is full, create a new dummy (non-empty) interior node that
// points to it, allowing the old root to be split.
if (getRoot(Root)->isFull())
Root = new DeltaTreeInteriorNode(getRoot(Root));
if (MyRoot->isFull())
Root = MyRoot = new DeltaTreeInteriorNode(MyRoot);
getRoot(Root)->AddDeltaNonFull(FileIndex, Delta);
MyRoot->AddDeltaNonFull(FileIndex, Delta);
#ifdef VERIFY_TREE
VerifyTree(Root);
VerifyTree(MyRoot);
#endif
}