When folding additive operations, convert the values to the same type. When assuming relationships, convert the integers to the same type as the symbol, at least for now.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@106458 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jordy Rose 2010-06-21 20:15:15 +00:00
Родитель 9a12685096
Коммит b4954a4175
3 изменённых файлов: 84 добавлений и 26 удалений

Просмотреть файл

@ -173,17 +173,6 @@ const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
if (!SE)
return state;
GRStateManager &StateMgr = state->getStateManager();
ASTContext &Ctx = StateMgr.getContext();
BasicValueFactory &BasicVals = StateMgr.getBasicVals();
// FIXME: This is a hack. It silently converts the RHS integer to be
// of the same type as on the left side. This should be removed once
// we support truncation/extension of symbolic values.
const SymExpr *LHS = SE->getLHS();
QualType LHSType = LHS->getType(Ctx);
const llvm::APSInt &RHS = BasicVals.Convert(LHSType, SE->getRHS());
BinaryOperator::Opcode op = SE->getOpcode();
// FIXME: We should implicitly compare non-comparison expressions to 0.
if (!BinaryOperator::isComparisonOp(op))
@ -193,7 +182,7 @@ const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
if (!Assumption)
op = NegateComparison(op);
return AssumeSymRel(state, LHS, op, RHS);
return AssumeSymRel(state, SE->getLHS(), op, SE->getRHS());
}
case nonloc::ConcreteIntKind: {
@ -222,11 +211,13 @@ const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state,
// x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
// in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
// the subclasses of SimpleConstraintManager to handle the adjustment.
llvm::APSInt Adjustment(Int.getBitWidth(), Int.isUnsigned());
llvm::APSInt Adjustment;
// First check if the LHS is a simple symbol reference.
SymbolRef Sym = dyn_cast<SymbolData>(LHS);
if (!Sym) {
if (Sym) {
Adjustment = 0;
} else {
// Next, see if it's a "($sym+constant1)" expression.
const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);
@ -256,28 +247,48 @@ const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state,
}
}
// FIXME: This next section is a hack. It silently converts the integers to
// be of the same type as the symbol, which is not always correct. Really the
// comparisons should be performed using the Int's type, then mapped back to
// the symbol's range of values.
GRStateManager &StateMgr = state->getStateManager();
ASTContext &Ctx = StateMgr.getContext();
QualType T = Sym->getType(Ctx);
assert(T->isIntegerType() || Loc::IsLocType(T));
unsigned bitwidth = Ctx.getTypeSize(T);
bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T);
// Convert the adjustment.
Adjustment.setIsUnsigned(isSymUnsigned);
Adjustment.extOrTrunc(bitwidth);
// Convert the right-hand side integer.
llvm::APSInt ConvertedInt(Int, isSymUnsigned);
ConvertedInt.extOrTrunc(bitwidth);
switch (op) {
default:
// No logic yet for other operators. Assume the constraint is feasible.
return state;
case BinaryOperator::EQ:
return AssumeSymEQ(state, Sym, Int, Adjustment);
return AssumeSymEQ(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::NE:
return AssumeSymNE(state, Sym, Int, Adjustment);
return AssumeSymNE(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::GT:
return AssumeSymGT(state, Sym, Int, Adjustment);
return AssumeSymGT(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::GE:
return AssumeSymGE(state, Sym, Int, Adjustment);
return AssumeSymGE(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::LT:
return AssumeSymLT(state, Sym, Int, Adjustment);
return AssumeSymLT(state, Sym, ConvertedInt, Adjustment);
case BinaryOperator::LE:
return AssumeSymLE(state, Sym, Int, Adjustment);
return AssumeSymLE(state, Sym, ConvertedInt, Adjustment);
} // end switch
}

Просмотреть файл

@ -411,15 +411,22 @@ SVal SimpleSValuator::EvalBinOpNN(const GRState *state,
BinaryOperator::Opcode lop = symIntExpr->getOpcode();
if (BinaryOperator::isAdditiveOp(lop)) {
BasicValueFactory &BVF = ValMgr.getBasicValueFactory();
// resultTy may not be the best type to convert to, but it's
// probably the best choice in expressions with mixed type
// (such as x+1U+2LL). The rules for implicit conversions should
// choose a reasonable type to preserve the expression, and will
// at least match how the value is going to be used.
const llvm::APSInt &first =
BVF.Convert(resultTy, symIntExpr->getRHS());
const llvm::APSInt &second =
BVF.Convert(resultTy, rhsInt->getValue());
const llvm::APSInt *newRHS;
if (lop == op)
newRHS = BVF.EvaluateAPSInt(BinaryOperator::Add,
symIntExpr->getRHS(),
rhsInt->getValue());
newRHS = BVF.EvaluateAPSInt(BinaryOperator::Add, first, second);
else
newRHS = BVF.EvaluateAPSInt(BinaryOperator::Sub,
symIntExpr->getRHS(),
rhsInt->getValue());
newRHS = BVF.EvaluateAPSInt(BinaryOperator::Sub, first, second);
return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
}
}

Просмотреть файл

@ -33,6 +33,22 @@ void oneLongExpression (int a) {
free(buf);
}
void mixedTypes (int a) {
char* buf = malloc(1);
// Different additive types should not cause crashes when constant-folding.
// This is part of PR7406.
int b = a + 1LL;
if (a != 0 && (b-1) == 0) // not crash
return; // no warning
int c = a + 1U;
if (a != 0 && (c-1) == 0) // not crash
return; // no warning
free(buf);
}
//---------------
// Comparisons
//---------------
@ -60,6 +76,30 @@ void ne_eq (unsigned a) {
free(b);
}
// Mixed typed inequalities (part of PR7406)
// These should not crash.
void mixed_eq_ne (int a) {
char* b = NULL;
if (a == 1)
b = malloc(1);
if (a+1U != 2)
return; // no-warning
if (a-1U != 0)
return; // no-warning
free(b);
}
void mixed_ne_eq (int a) {
char* b = NULL;
if (a != 1)
b = malloc(1);
if (a+1U == 2)
return; // no-warning
if (a-1U == 0)
return; // no-warning
free(b);
}
// Simple order comparisons with no adjustment
void baselineGT (unsigned a) {