Add checks and diagnostics for many of the cases which C++11 considers to not

be constant expressions.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@146479 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Richard Smith 2011-12-13 06:39:58 +00:00
Родитель 9081c049ec
Коммит c1c5f27c64
8 изменённых файлов: 587 добавлений и 96 удалений

Просмотреть файл

@ -3162,6 +3162,12 @@ inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
DiagnosticsEngine::ak_nameddecl);
return DB;
}
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
const NamedDecl* ND) {
PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
DiagnosticsEngine::ak_nameddecl);
return PD;
}
template<typename decl_type>
void Redeclarable<decl_type>::setPreviousDeclaration(decl_type *PrevDecl) {

Просмотреть файл

@ -15,6 +15,24 @@ def note_expr_divide_by_zero : Note<"division by zero">;
def note_constexpr_invalid_cast : Note<
"%select{reinterpret_cast|dynamic_cast|cast which performs the conversions of"
" a reinterpret_cast|cast from %1}0 is not allowed in a constant expression">;
def note_constexpr_overflow : Note<
"value %0 is outside the range of representable values of type %1">;
def note_constexpr_invalid_function : Note<
"%select{non-constexpr|undefined}0 %select{function|constructor}1 %2 cannot "
"be used in a constant expression">;
def note_constexpr_nonliteral : Note<
"non-literal type %0 cannot be used in a constant expression">;
def note_constexpr_non_global : Note<
"%select{pointer|reference}0 to %select{|subobject of }1"
"%select{temporary|%4}2 %select{is not a constant expression|"
"cannot be returned from a constexpr function|"
"cannot be used to initialize a member in a constant expression}3">;
def note_constexpr_past_end : Note<
"dereferenced pointer past the end of %select{|subobject of}0 "
"%select{temporary|%2}1 is not a constant expression">;
def note_constexpr_temporary_here : Note<"temporary created here">;
def note_constexpr_depth_limit_exceeded : Note<
"constexpr evaluation exceeded maximum depth of %0 calls">;
// inline asm related.
let CategoryName = "Inline Assembly Issue" in {

Просмотреть файл

@ -18,6 +18,7 @@ let Component = "Common" in {
def fatal_too_many_errors
: Error<"too many errors emitted, stopping now">, DefaultFatal;
def note_declared_at : Note<"declared here">;
def note_previous_definition : Note<"previous definition is here">;
def note_previous_declaration : Note<"previous declaration is here">;
def note_previous_implicit_declaration : Note<

Просмотреть файл

@ -485,7 +485,6 @@ def warn_strict_multiple_method_decl : Warning<
"multiple methods named %0 found">, InGroup<StrictSelector>, DefaultIgnore;
def warn_accessor_property_type_mismatch : Warning<
"type of property %0 does not match type of accessor %1">;
def note_declared_at : Note<"declared here">;
def note_method_declared_at : Note<"method declared here">;
def err_setter_type_void : Error<"type of setter must be void">;
def err_duplicate_method_decl : Error<"duplicate declaration of method %0">;

Просмотреть файл

@ -293,11 +293,15 @@ namespace {
/// declaration whose initializer is being evaluated, if any.
APValue *EvaluatingDeclValue;
/// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
/// notes attached to it will also be stored, otherwise they will not be.
bool HasActiveDiagnostic;
EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
: Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
CallStackDepth(0), BottomFrame(*this, 0, 0), EvaluatingDecl(0),
EvaluatingDeclValue(0) {}
EvaluatingDeclValue(0), HasActiveDiagnostic(false) {}
const CCValue *getOpaqueValue(const OpaqueValueExpr *e) const {
MapTy::const_iterator i = OpaqueValues.find(e);
@ -312,33 +316,55 @@ namespace {
const LangOptions &getLangOpts() const { return Ctx.getLangOptions(); }
bool atCallLimit() const {
return CallStackDepth > getLangOpts().ConstexprCallDepth;
bool CheckCallLimit(SourceLocation Loc) {
if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
return true;
Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
<< getLangOpts().ConstexprCallDepth;
return false;
}
private:
/// Add a diagnostic to the diagnostics list.
PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
return EvalStatus.Diag->back().second;
}
public:
/// Diagnose that the evaluation cannot be folded.
OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId) {
OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId,
unsigned ExtraNotes = 0) {
// If we have a prior diagnostic, it will be noting that the expression
// isn't a constant expression. This diagnostic is more important.
// FIXME: We might want to show both diagnostics to the user.
if (EvalStatus.Diag) {
HasActiveDiagnostic = true;
EvalStatus.Diag->clear();
EvalStatus.Diag->reserve(1);
PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
EvalStatus.Diag->reserve(1 + ExtraNotes);
// FIXME: Add a call stack for constexpr evaluation.
return OptionalDiagnostic(&EvalStatus.Diag->back().second);
return OptionalDiagnostic(&addDiag(Loc, DiagId));
}
HasActiveDiagnostic = false;
return OptionalDiagnostic();
}
/// Diagnose that the evaluation does not produce a C++11 core constant
/// expression.
OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId) {
OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId,
unsigned ExtraNotes = 0) {
// Don't override a previous diagnostic.
if (!EvalStatus.Diag || !EvalStatus.Diag->empty())
return OptionalDiagnostic();
return Diag(Loc, DiagId);
return Diag(Loc, DiagId, ExtraNotes);
}
/// Add a note to a prior diagnostic.
OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
if (!HasActiveDiagnostic)
return OptionalDiagnostic();
return OptionalDiagnostic(&addDiag(Loc, DiagId));
}
};
@ -515,11 +541,20 @@ namespace {
return castBack(Base);
}
};
/// Kinds of constant expression checking, for diagnostics.
enum CheckConstantExpressionKind {
CCEK_Constant, ///< A normal constant.
CCEK_ReturnValue, ///< A constexpr function return value.
CCEK_MemberInit ///< A constexpr constructor mem-initializer.
};
}
static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E);
static bool EvaluateConstantExpression(APValue &Result, EvalInfo &Info,
const LValue &This, const Expr *E);
const LValue &This, const Expr *E,
CheckConstantExpressionKind CCEK
= CCEK_Constant);
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
@ -586,22 +621,53 @@ static bool IsGlobalLValue(APValue::LValueBase B) {
/// value for a constant expression. Type T should be either LValue or CCValue.
template<typename T>
static bool CheckLValueConstantExpression(EvalInfo &Info, const Expr *E,
const T &LVal, APValue &Value) {
if (!IsGlobalLValue(LVal.getLValueBase())) {
Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
const T &LVal, APValue &Value,
CheckConstantExpressionKind CCEK) {
APValue::LValueBase Base = LVal.getLValueBase();
const SubobjectDesignator &Designator = LVal.getLValueDesignator();
if (!IsGlobalLValue(Base)) {
if (Info.getLangOpts().CPlusPlus0x) {
const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
Info.Diag(E->getExprLoc(), diag::note_constexpr_non_global, 1)
<< E->isGLValue() << !Designator.Entries.empty()
<< !!VD << CCEK << VD;
if (VD)
Info.Note(VD->getLocation(), diag::note_declared_at);
else
Info.Note(Base.dyn_cast<const Expr*>()->getExprLoc(),
diag::note_constexpr_temporary_here);
} else {
Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
}
return false;
}
const SubobjectDesignator &Designator = LVal.getLValueDesignator();
// A constant expression must refer to an object or be a null pointer.
if (Designator.Invalid ||
(!LVal.getLValueBase() && !Designator.Entries.empty())) {
// FIXME: This is not a constant expression.
// FIXME: This is not a core constant expression. We should have already
// produced a CCE diagnostic.
Value = APValue(LVal.getLValueBase(), LVal.getLValueOffset(),
APValue::NoLValuePath());
return true;
}
// Does this refer one past the end of some object?
// This is technically not an address constant expression nor a reference
// constant expression, but we allow it for address constant expressions.
if (E->isGLValue() && Base && Designator.OnePastTheEnd) {
const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
Info.Diag(E->getExprLoc(), diag::note_constexpr_past_end, 1)
<< !Designator.Entries.empty() << !!VD << VD;
if (VD)
Info.Note(VD->getLocation(), diag::note_declared_at);
else
Info.Note(Base.dyn_cast<const Expr*>()->getExprLoc(),
diag::note_constexpr_temporary_here);
return false;
}
Value = APValue(LVal.getLValueBase(), LVal.getLValueOffset(),
Designator.Entries, Designator.OnePastTheEnd);
return true;
@ -611,12 +677,14 @@ static bool CheckLValueConstantExpression(EvalInfo &Info, const Expr *E,
/// constant expression, and if it is, produce the corresponding constant value.
/// If not, report an appropriate diagnostic.
static bool CheckConstantExpression(EvalInfo &Info, const Expr *E,
const CCValue &CCValue, APValue &Value) {
const CCValue &CCValue, APValue &Value,
CheckConstantExpressionKind CCEK
= CCEK_Constant) {
if (!CCValue.isLValue()) {
Value = CCValue;
return true;
}
return CheckLValueConstantExpression(Info, E, CCValue, Value);
return CheckLValueConstantExpression(Info, E, CCValue, Value, CCEK);
}
const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
@ -693,26 +761,41 @@ static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
return HandleConversionToBool(Val, Result);
}
static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType,
APFloat &Value, const ASTContext &Ctx) {
unsigned DestWidth = Ctx.getIntWidth(DestType);
template<typename T>
static bool HandleOverflow(EvalInfo &Info, const Expr *E,
const T &SrcValue, QualType DestType) {
llvm::SmallVector<char, 32> Buffer;
SrcValue.toString(Buffer);
Info.Diag(E->getExprLoc(), diag::note_constexpr_overflow)
<< StringRef(Buffer.data(), Buffer.size()) << DestType;
return false;
}
static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
QualType SrcType, const APFloat &Value,
QualType DestType, APSInt &Result) {
unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
// Determine whether we are converting to unsigned or signed.
bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
// FIXME: Warning for overflow.
APSInt Result(DestWidth, !DestSigned);
Result = APSInt(DestWidth, !DestSigned);
bool ignored;
(void)Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored);
return Result;
if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
& APFloat::opInvalidOp)
return HandleOverflow(Info, E, Value, DestType);
return true;
}
static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType,
APFloat &Value, const ASTContext &Ctx) {
static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
QualType SrcType, QualType DestType,
APFloat &Result) {
APFloat Value = Result;
bool ignored;
APFloat Result = Value;
Result.convert(Ctx.getFloatTypeSemantics(DestType),
APFloat::rmNearestTiesToEven, &ignored);
return Result;
if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
APFloat::rmNearestTiesToEven, &ignored)
& APFloat::opOverflow)
return HandleOverflow(Info, E, Value, DestType);
return true;
}
static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType,
@ -726,13 +809,15 @@ static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType,
return Result;
}
static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType,
APSInt &Value, const ASTContext &Ctx) {
APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1);
Result.convertFromAPInt(Value, Value.isSigned(),
APFloat::rmNearestTiesToEven);
return Result;
static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
QualType SrcType, const APSInt &Value,
QualType DestType, APFloat &Result) {
Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
if (Result.convertFromAPInt(Value, Value.isSigned(),
APFloat::rmNearestTiesToEven)
& APFloat::opOverflow)
return HandleOverflow(Info, E, Value, DestType);
return true;
}
static bool FindMostDerivedObject(EvalInfo &Info, const LValue &LVal,
@ -1311,7 +1396,7 @@ enum EvalStmtResult {
}
// Evaluate a statement.
static EvalStmtResult EvaluateStmt(CCValue &Result, EvalInfo &Info,
static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
const Stmt *S) {
switch (S->getStmtClass()) {
default:
@ -1321,10 +1406,15 @@ static EvalStmtResult EvaluateStmt(CCValue &Result, EvalInfo &Info,
case Stmt::DeclStmtClass:
return ESR_Succeeded;
case Stmt::ReturnStmtClass:
if (Evaluate(Result, Info, cast<ReturnStmt>(S)->getRetValue()))
return ESR_Returned;
return ESR_Failed;
case Stmt::ReturnStmtClass: {
CCValue CCResult;
const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
if (!Evaluate(CCResult, Info, RetExpr) ||
!CheckConstantExpression(Info, RetExpr, CCResult, Result,
CCEK_ReturnValue))
return ESR_Failed;
return ESR_Returned;
}
case Stmt::CompoundStmtClass: {
const CompoundStmt *CS = cast<CompoundStmt>(S);
@ -1339,6 +1429,27 @@ static EvalStmtResult EvaluateStmt(CCValue &Result, EvalInfo &Info,
}
}
/// CheckConstexprFunction - Check that a function can be called in a constant
/// expression.
static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
const FunctionDecl *Declaration,
const FunctionDecl *Definition) {
// Can we evaluate this function call?
if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
return true;
if (Info.getLangOpts().CPlusPlus0x) {
const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
<< DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
<< DiagDecl;
Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
} else {
Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
}
return false;
}
namespace {
typedef SmallVector<CCValue, 8> ArgVector;
}
@ -1356,12 +1467,9 @@ static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
/// Evaluate a function call.
static bool HandleFunctionCall(const Expr *CallExpr, const LValue *This,
ArrayRef<const Expr*> Args, const Stmt *Body,
EvalInfo &Info, CCValue &Result) {
if (Info.atCallLimit()) {
// FIXME: Add a specific proper diagnostic for this.
Info.Diag(CallExpr->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
EvalInfo &Info, APValue &Result) {
if (!Info.CheckCallLimit(CallExpr->getExprLoc()))
return false;
}
ArgVector ArgValues(Args.size());
if (!EvaluateArgs(Args, ArgValues, Info))
@ -1377,11 +1485,8 @@ static bool HandleConstructorCall(const Expr *CallExpr, const LValue &This,
const CXXConstructorDecl *Definition,
EvalInfo &Info,
APValue &Result) {
if (Info.atCallLimit()) {
// FIXME: Add a specific diagnostic for this.
Info.Diag(CallExpr->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
if (!Info.CheckCallLimit(CallExpr->getExprLoc()))
return false;
}
ArgVector ArgValues(Args.size());
if (!EvaluateArgs(Args, ArgValues, Info))
@ -1430,12 +1535,12 @@ static bool HandleConstructorCall(const Expr *CallExpr, const LValue &This,
HandleLValueMember(Info, Subobject, FD, &Layout);
if (RD->isUnion()) {
Result = APValue(FD);
if (!EvaluateConstantExpression(Result.getUnionValue(), Info,
Subobject, (*I)->getInit()))
if (!EvaluateConstantExpression(Result.getUnionValue(), Info, Subobject,
(*I)->getInit(), CCEK_MemberInit))
return false;
} else if (!EvaluateConstantExpression(
Result.getStructField(FD->getFieldIndex()),
Info, Subobject, (*I)->getInit()))
Info, Subobject, (*I)->getInit(), CCEK_MemberInit))
return false;
} else {
// FIXME: handle indirect field initializers
@ -1745,16 +1850,12 @@ public:
} else
return Error(E);
const FunctionDecl *Definition;
const FunctionDecl *Definition = 0;
Stmt *Body = FD->getBody(Definition);
CCValue CCResult;
APValue Result;
if (!Body || !Definition->isConstexpr() || Definition->isInvalidDecl())
return Error(E);
if (!HandleFunctionCall(E, This, Args, Body, Info, CCResult) ||
!CheckConstantExpression(Info, E, CCResult, Result))
if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
!HandleFunctionCall(E, This, Args, Body, Info, Result))
return false;
return DerivedSuccess(CCValue(Result, CCValue::GlobalValue()), E);
@ -1878,6 +1979,10 @@ public:
if (!EvaluatePointer(E->getBase(), Result, this->Info))
return false;
BaseTy = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
} else if (E->getBase()->isRValue()) {
if (!EvaluateTemporary(E->getBase(), Result, this->Info))
return false;
BaseTy = E->getBase()->getType();
} else {
if (!this->Visit(E->getBase()))
return false;
@ -2516,8 +2621,8 @@ bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
const FunctionDecl *Definition = 0;
FD->getBody(Definition);
if (!Definition || !Definition->isConstexpr() || Definition->isInvalidDecl())
return Error(E);
if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
return false;
// FIXME: Elide the copy/move construction wherever we can.
if (E->isElidable())
@ -2837,8 +2942,8 @@ bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
const FunctionDecl *Definition = 0;
FD->getBody(Definition);
if (!Definition || !Definition->isConstexpr() || Definition->isInvalidDecl())
return Error(E);
if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
return false;
// FIXME: The Subobject here isn't necessarily right. This rarely matters,
// but sometimes does:
@ -3881,7 +3986,10 @@ bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
if (!EvaluateFloat(SubExpr, F, Info))
return false;
return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E);
APSInt Value;
if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
return false;
return Success(Value, E);
}
}
@ -4130,19 +4238,16 @@ bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
case CK_IntegralToFloating: {
APSInt IntResult;
if (!EvaluateInteger(SubExpr, IntResult, Info))
return false;
Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(),
IntResult, Info.Ctx);
return true;
return EvaluateInteger(SubExpr, IntResult, Info) &&
HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
E->getType(), Result);
}
case CK_FloatingCast: {
if (!Visit(SubExpr))
return false;
Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(),
Result, Info.Ctx);
return true;
return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
Result);
}
case CK_FloatingComplexToReal: {
@ -4289,11 +4394,8 @@ bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
QualType From
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
Result.FloatReal
= HandleFloatToFloatCast(To, From, Result.FloatReal, Info.Ctx);
Result.FloatImag
= HandleFloatToFloatCast(To, From, Result.FloatImag, Info.Ctx);
return true;
return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
}
case CK_FloatingComplexToIntegralComplex: {
@ -4304,9 +4406,10 @@ bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
QualType From
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
Result.makeComplexInt();
Result.IntReal = HandleFloatToIntCast(To, From, Result.FloatReal, Info.Ctx);
Result.IntImag = HandleFloatToIntCast(To, From, Result.FloatImag, Info.Ctx);
return true;
return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
To, Result.IntReal) &&
HandleFloatToIntCast(Info, E, From, Result.FloatImag,
To, Result.IntImag);
}
case CK_IntegralRealToComplex: {
@ -4340,9 +4443,10 @@ bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
QualType From
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
Result.makeComplexFloat();
Result.FloatReal = HandleIntToFloatCast(To, From, Result.IntReal, Info.Ctx);
Result.FloatImag = HandleIntToFloatCast(To, From, Result.IntImag, Info.Ctx);
return true;
return HandleIntToFloatCast(Info, E, From, Result.IntReal,
To, Result.FloatReal) &&
HandleIntToFloatCast(Info, E, From, Result.IntImag,
To, Result.FloatImag);
}
}
@ -4581,8 +4685,16 @@ static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E) {
return false;
Result = Info.CurrentCall->Temporaries[E];
} else if (E->getType()->isVoidType()) {
if (Info.getLangOpts().CPlusPlus0x)
Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_nonliteral)
<< E->getType();
else
Info.CCEDiag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
if (!EvaluateVoid(E, Info))
return false;
} else if (Info.getLangOpts().CPlusPlus0x) {
Info.Diag(E->getExprLoc(), diag::note_constexpr_nonliteral) << E->getType();
return false;
} else {
Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
return false;
@ -4596,7 +4708,8 @@ static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E) {
/// since later initializers for an object can indirectly refer to subobjects
/// which were initialized earlier.
static bool EvaluateConstantExpression(APValue &Result, EvalInfo &Info,
const LValue &This, const Expr *E) {
const LValue &This, const Expr *E,
CheckConstantExpressionKind CCEK) {
if (E->isRValue() && E->getType()->isLiteralType()) {
// Evaluate arrays and record types in-place, so that later initializers can
// refer to earlier-initialized members of the object.
@ -4609,7 +4722,7 @@ static bool EvaluateConstantExpression(APValue &Result, EvalInfo &Info,
// For any other type, in-place evaluation is unimportant.
CCValue CoreConstResult;
return Evaluate(CoreConstResult, Info, E) &&
CheckConstantExpression(Info, E, CoreConstResult, Result);
CheckConstantExpression(Info, E, CoreConstResult, Result, CCEK);
}
/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
@ -4681,7 +4794,8 @@ bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
LValue LV;
return EvaluateLValue(this, LV, Info) && !Result.HasSideEffects &&
CheckLValueConstantExpression(Info, this, LV, Result.Val);
CheckLValueConstantExpression(Info, this, LV, Result.Val,
CCEK_Constant);
}
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be

Просмотреть файл

@ -1,4 +1,357 @@
// RUN: %clang_cc1 -fsyntax-only -std=c++11 -verify %s
// RUN: %clang_cc1 -fsyntax-only -std=c++11 -pedantic -verify -fcxx-exceptions %s
// A conditional-expression is a core constant expression unless it involves one
// of the following as a potentially evaluated subexpression [...]:
// - this (5.1.1 [expr.prim.general]) [Note: when evaluating a constant
// expression, function invocation substitution (7.1.5 [dcl.constexpr])
// replaces each occurrence of this in a constexpr member function with a
// pointer to the class object. -end note];
struct This {
int this1 : this1; // expected-error {{undeclared}}
int this2 : this->this1; // expected-error {{invalid}}
void this3() {
int n1[this->this1]; // expected-warning {{variable length array}}
int n2[this1]; // expected-warning {{variable length array}}
(void)n1, (void)n2;
}
};
// - an invocation of a function other than a constexpr constructor for a
// literal class or a constexpr function [ Note: Overload resolution (13.3)
// is applied as usual - end note ];
struct NonConstexpr1 {
static int f() { return 1; } // expected-note {{here}}
int n : f(); // expected-error {{constant expression}} expected-note {{non-constexpr function 'f' cannot be used in a constant expression}}
};
struct NonConstexpr2 {
constexpr NonConstexpr2(); // expected-note {{here}}
int n;
};
struct NonConstexpr3 {
NonConstexpr3();
int m : NonConstexpr2().n; // expected-error {{constant expression}} expected-note {{undefined constructor 'NonConstexpr2'}}
};
struct NonConstexpr4 {
NonConstexpr4();
int n;
};
struct NonConstexpr5 {
int n : NonConstexpr4().n; // expected-error {{constant expression}} expected-note {{non-literal type 'NonConstexpr4' cannot be used in a constant expression}}
};
// - an invocation of an undefined constexpr function or an undefined
// constexpr constructor;
struct UndefinedConstexpr {
constexpr UndefinedConstexpr();
static constexpr int undefinedConstexpr1(); // expected-note {{here}}
int undefinedConstexpr2 : undefinedConstexpr1(); // expected-error {{constant expression}} expected-note {{undefined function 'undefinedConstexpr1' cannot be used in a constant expression}}
};
// - an invocation of a constexpr function with arguments that, when substituted
// by function invocation substitution (7.1.5), do not produce a constant
// expression;
namespace NonConstExprReturn {
static constexpr const int &id_ref(const int &n) {
return n; // expected-note {{reference to temporary cannot be returned from a constexpr function}}
}
struct NonConstExprFunction {
int n : id_ref( // expected-error {{constant expression}}
16 // expected-note {{temporary created here}}
);
};
constexpr const int *address_of(const int &a) {
return &a; // expected-note {{pointer to 'n' cannot be returned from a constexpr function}}
}
constexpr const int *return_param(int n) { // expected-note {{declared here}}
return address_of(n);
}
struct S {
int n : *return_param(0); // expected-error {{constant expression}}
};
}
// - an invocation of a constexpr constructor with arguments that, when
// substituted by function invocation substitution (7.1.5), do not produce all
// constant expressions for the constructor calls and full-expressions in the
// mem-initializers (including conversions);
namespace NonConstExprCtor {
struct T {
constexpr T(const int &r) :
r(r) { // expected-note {{reference to temporary cannot be used to initialize a member in a constant expression}}
}
const int &r;
};
constexpr int n = 0;
constexpr T t1(n); // ok
constexpr T t2(0); // expected-error {{must be initialized by a constant expression}}
struct S {
int n : T(4).r; // expected-error {{constant expression}} expected-note {{temporary created here}}
};
}
// - an invocation of a constexpr function or a constexpr constructor that would
// exceed the implementation-defined recursion limits (see Annex B);
namespace RecursionLimits {
constexpr int RecurseForever(int n) {
return n + RecurseForever(n+1); // expected-note {{constexpr evaluation exceeded maximum depth of 512 calls}}
}
struct AlsoRecurseForever {
constexpr AlsoRecurseForever(int n) :
n(AlsoRecurseForever(n+1).n) // expected-note {{constexpr evaluation exceeded maximum depth of 512 calls}}
{}
int n;
};
struct S {
int k : RecurseForever(0); // expected-error {{constant expression}}
int l : AlsoRecurseForever(0).n; // expected-error {{constant expression}}
};
}
// FIXME:
// - an operation that would have undefined behavior [Note: including, for
// example, signed integer overflow (Clause 5 [expr]), certain pointer
// arithmetic (5.7 [expr.add]), division by zero (5.6 [expr.mul]), or certain
// shift operations (5.8 [expr.shift]) -end note];
namespace UndefinedBehavior {
void f(int n) {
switch (n) {
case (int)4.4e9: // expected-error {{constant expression}} expected-note {{value 4.4E+9 is outside the range of representable values of type 'int'}}
case (int)(unsigned)(long long)4.4e9: // ok
case (float)1e300: // expected-error {{constant expression}} expected-note {{value 1.0E+300 is outside the range of representable values of type 'float'}}
case (int)((float)1e37 / 1e30): // ok
case (int)(__fp16)65536: // expected-error {{constant expression}} expected-note {{value 65536 is outside the range of representable values of type 'half'}}
break;
}
}
struct S {
int m;
};
constexpr S s = { 5 }; // expected-note {{declared here}}
constexpr const int *p = &s.m + 1;
constexpr const int &f(const int *q) {
return q[0]; // expected-note {{dereferenced pointer past the end of subobject of 's' is not a constant expression}}
}
struct T {
int n : f(p); // expected-error {{not an integer constant expression}}
};
}
// - a lambda-expression (5.1.2);
struct Lambda {
// FIXME: clang crashes when trying to parse this! Revisit this check once
// lambdas are fully implemented.
//int n : []{ return 1; }();
};
// FIXME:
// - an lvalue-to-rvalue conversion (4.1) unless it is applied to
//
// - a non-volatile glvalue of integral or enumeration type that refers to a
// non-volatile const object with a preceding initialization, initialized with
// a constant expression [Note: a string literal (2.14.5 [lex.string])
// corresponds to an array of such objects. -end note], or
//
// - a non-volatile glvalue of literal type that refers to a non-volatile
// object defined with constexpr, or that refers to a sub-object of such an
// object, or
//
// - a non-volatile glvalue of literal type that refers to a non-volatile
// temporary object whose lifetime has not ended, initialized with a constant
// expression;
// FIXME:
//
// DR1312: The proposed wording for this defect has issues, so we instead
// prohibit casts from pointers to cv void (see core-20842 and core-20845).
//
// - an lvalue-to-rvalue conversion (4.1 [conv.lval]) that is applied to a
// glvalue of type cv1 T that refers to an object of type cv2 U, where T and U
// are neither the same type nor similar types (4.4 [conv.qual]);
// FIXME:
// - an lvalue-to-rvalue conversion (4.1) that is applied to a glvalue that
// refers to a non-active member of a union or a subobject thereof;
// FIXME:
// - an id-expression that refers to a variable or data member of reference type
// unless the reference has a preceding initialization, initialized with a
// constant expression;
namespace References {
const int a = 2;
int &b = *const_cast<int*>(&a);
int c = 10;
int &d = c;
constexpr int e = 42;
int &f = const_cast<int&>(e);
extern int &g;
constexpr int &h(); // expected-note {{here}}
int &i = h();
constexpr int &j() { return b; }
int &k = j();
struct S {
int A : a;
int B : b;
int C : c; // expected-error {{constant expression}}
int D : d; // expected-error {{constant expression}}
int D2 : &d - &c + 1;
int E : e / 2;
int F : f - 11;
int G : g; // expected-error {{constant expression}}
int H : h(); // expected-error {{constant expression}} expected-note {{undefined function 'h'}}
int I : i; // expected-error {{constant expression}}
int J : j();
int K : k;
};
}
// - a dynamic_cast (5.2.7);
namespace DynamicCast {
struct S { int n; };
constexpr S s { 16 };
struct T {
int n : dynamic_cast<const S*>(&s)->n; // expected-warning {{constant expression}} expected-note {{dynamic_cast}}
};
}
// - a reinterpret_cast (5.2.10);
namespace ReinterpretCast {
struct S { int n; };
constexpr S s { 16 };
struct T {
int n : reinterpret_cast<const S*>(&s)->n; // expected-warning {{constant expression}} expected-note {{reinterpret_cast}}
};
struct U {
int m : (long)(S*)6; // expected-warning {{constant expression}} expected-note {{reinterpret_cast}}
};
}
// - a pseudo-destructor call (5.2.4);
namespace PseudoDtor {
int k;
typedef int I;
struct T {
int n : (k.~I(), 0); // expected-error {{constant expression}} expected-note{{subexpression}}
};
}
// - increment or decrement operations (5.2.6, 5.3.2);
namespace IncDec {
int k = 2;
struct T {
int n : ++k; // expected-error {{constant expression}}
int m : --k; // expected-error {{constant expression}}
};
}
// - a typeid expression (5.2.8) whose operand is of a polymorphic class type;
namespace std {
struct type_info {
virtual ~type_info();
const char *name;
};
}
namespace TypeId {
struct S { virtual void f(); };
constexpr S *p = 0;
constexpr const std::type_info &ti1 = typeid(*p); // expected-error {{must be initialized by a constant expression}}
// FIXME: Implement typeid evaluation.
struct T {} t;
constexpr const std::type_info &ti2 = typeid(t); // unexpected-error {{must be initialized by a constant expression}}
}
// - a new-expression (5.3.4);
// - a delete-expression (5.3.5);
namespace NewDelete {
int *p = 0;
struct T {
int n : *new int(4); // expected-error {{constant expression}} expected-note {{subexpression}}
int m : (delete p, 2); // expected-error {{constant expression}} expected-note {{subexpression}}
};
}
// - a relational (5.9) or equality (5.10) operator where the result is
// unspecified;
namespace UnspecifiedRelations {
int a, b;
constexpr int *p = &a, *q = &b;
// C++11 [expr.rel]p2: If two pointers p and q of the same type point to
// different objects that are not members of the same array or to different
// functions, or if only one of them is null, the results of p<q, p>q, p<=q,
// and p>=q are unspecified.
constexpr bool u1 = p < q; // expected-error {{constant expression}}
constexpr bool u2 = p > q; // expected-error {{constant expression}}
constexpr bool u3 = p <= q; // expected-error {{constant expression}}
constexpr bool u4 = p >= q; // expected-error {{constant expression}}
constexpr bool u5 = p < 0; // expected-error {{constant expression}}
constexpr bool u6 = p <= 0; // expected-error {{constant expression}}
constexpr bool u7 = p > 0; // expected-error {{constant expression}}
constexpr bool u8 = p >= 0; // expected-error {{constant expression}}
constexpr bool u9 = 0 < q; // expected-error {{constant expression}}
constexpr bool u10 = 0 <= q; // expected-error {{constant expression}}
constexpr bool u11 = 0 > q; // expected-error {{constant expression}}
constexpr bool u12 = 0 >= q; // expected-error {{constant expression}}
void f(), g();
constexpr void (*pf)() = &f, (*pg)() = &g;
constexpr bool u13 = pf < pg; // expected-error {{constant expression}}
constexpr bool u14 = pf == pg;
// FIXME:
// If two pointers point to non-static data members of the same object with
// different access control, the result is unspecified.
// FIXME:
// [expr.rel]p3: Pointers to void can be compared [...] if both pointers
// represent the same address or are both the null pointer [...]; otherwise
// the result is unspecified.
// FIXME: Implement comparisons of pointers to members.
// [expr.eq]p2: If either is a pointer to a virtual member function and
// neither is null, the result is unspecified.
}
// - an assignment or a compound assignment (5.17); or
namespace Assignment {
int k;
struct T {
int n : (k = 9); // expected-error {{constant expression}}
int m : (k *= 2); // expected-error {{constant expression}}
};
struct Literal {
constexpr Literal(const char *name) : name(name) {}
const char *name;
};
struct Expr {
constexpr Expr(Literal l) : IsLiteral(true), l(l) {}
bool IsLiteral;
union {
Literal l;
// ...
};
};
struct MulEq {
constexpr MulEq(Expr a, Expr b) : LHS(a), RHS(b) {}
Expr LHS;
Expr RHS;
};
constexpr MulEq operator*=(Expr a, Expr b) { return MulEq(a, b); }
Literal a("a");
Literal b("b");
MulEq c = a *= b; // ok
}
// - a throw-expression (15.1)
namespace Throw {
struct S {
int n : (throw "hello", 10); // expected-error {{constant expression}} expected-note {{subexpression}}
};
}
// PR9999
template<bool v>

Просмотреть файл

@ -10,7 +10,7 @@ static_assert(false, "test"); // expected-error {{test}}
// FIXME: support const T& parameters here.
//template<typename T> constexpr T id(const T &t) { return t; }
template<typename T> constexpr T id(T t) { return t; }
template<typename T> constexpr T id(T t) { return t; } // expected-note {{here}}
// FIXME: support templates here.
//template<typename T> constexpr T min(const T &a, const T &b) {
// return a < b ? a : b;
@ -95,9 +95,9 @@ namespace CaseStatements {
void f(int n) {
switch (n) {
// FIXME: Produce the 'add ()' fixit for this.
case MemberZero().zero: // desired-error {{did you mean to call it with no arguments?}} expected-error {{not an integer constant expression}}
case MemberZero().zero: // desired-error {{did you mean to call it with no arguments?}} expected-error {{not an integer constant expression}} expected-note {{non-literal type '<bound member function type>'}}
// FIXME: This should be accepted once we implement the new ICE rules.
case id(1): // expected-error {{not an integer constant expression}}
case id(1): // expected-error {{not an integer constant expression}} expected-note {{undefined function}}
return;
}
}

Просмотреть файл

@ -2,7 +2,7 @@
enum E {};
struct Z {};
struct Z {}; // expected-note {{here}}
typedef int Integer;
struct X {
@ -14,5 +14,5 @@ struct X {
struct Y {
enum E : int(2);
enum E : Z(); // expected-error{{not an integer constant}}
enum E : Z(); // expected-error{{not an integer constant}} expected-note {{non-constexpr constructor 'Z'}}
};