Converted CFGBuilder to use StmtVisitor instead of doing a switch

dispatch to walk the AST.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@41254 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Ted Kremenek 2007-08-21 22:06:14 +00:00
Родитель 09ff8124fc
Коммит c310e933a9
1 изменённых файлов: 121 добавлений и 160 удалений

Просмотреть файл

@ -14,6 +14,7 @@
#include "clang/AST/CFG.h"
#include "clang/AST/Expr.h"
#include "clang/AST/StmtVisitor.h"
#include <iostream>
#include <iomanip>
#include <algorithm>
@ -42,7 +43,13 @@ namespace {
/// CFGBuilder builder;
/// CFG* cfg = builder.BuildAST(stmt1);
///
class CFGBuilder {
/// CFG construction is done via a recursive walk of an AST.
/// We actually parse the AST in reverse order so that the successor
/// of a basic block is constructed prior to its predecessor. This
/// allows us to nicely capture implicit fall-throughs without extra
/// basic blocks.
///
class CFGBuilder : public StmtVisitor<CFGBuilder,CFGBlock*> {
CFG* cfg;
CFGBlock* Block;
CFGBlock* Exit;
@ -73,7 +80,7 @@ public:
Exit = Block;
// Visit the statements and create the CFG.
if (CFGBlock* B = visitStmt(Statement)) {
if (CFGBlock* B = Visit(Statement)) {
// Reverse the statements in the last constructed block. Statements
// are inserted into the blocks in reverse order.
B->reverseStmts();
@ -89,9 +96,7 @@ public:
return NULL;
}
}
private:
// createBlock - Used to lazily create blocks that are connected
// to the current (global) succcessor.
CFGBlock* createBlock( bool add_successor = true ) {
@ -99,169 +104,125 @@ private:
if (add_successor && Succ) B->addSuccessor(Succ);
return B;
}
// visitStmt - CFG construction is done via a recursive walk of an AST.
// We actually parse the AST in reverse order so that the successor
// of a basic block is constructed prior to its predecessor. This
// allows us to nicely capture implicit fall-throughs without extra
// basic blocks.
//
// The value returned from this function is the last created CFGBlock
// that represents the "entry" point for the translated AST node.
CFGBlock* visitStmt(Stmt* Statement) {
assert (Statement && "visitStmt does not accept NULL Stmt*");
switch (Statement->getStmtClass()) {
default:
assert (false && "statement case for CFGBuilder not yet implemented");
return NULL;
// Statements with no branching control flow.
case Stmt::NullStmtClass:
case Stmt::DeclStmtClass:
case Stmt::PreDefinedExprClass:
case Stmt::DeclRefExprClass:
case Stmt::IntegerLiteralClass:
case Stmt::FloatingLiteralClass:
case Stmt::StringLiteralClass:
case Stmt::CharacterLiteralClass:
case Stmt::ParenExprClass:
case Stmt::UnaryOperatorClass:
case Stmt::SizeOfAlignOfTypeExprClass:
case Stmt::ArraySubscriptExprClass:
case Stmt::CallExprClass:
case Stmt::BinaryOperatorClass:
case Stmt::ImplicitCastExprClass:
case Stmt::CompoundLiteralExprClass:
case Stmt::OCUVectorElementExprClass:
// We cannot assume that we are in the middle of a basic block, since
// the CFG might only be constructed for this single statement. If
// we have no current basic block, just create one lazily.
if (!Block) Block = createBlock();
// Simply add the statement to the current block. We actually
// insert statements in reverse order; this order is reversed later
// when processing the containing element in the AST.
Block->appendStmt(Statement);
break;
case Stmt::CompoundStmtClass: {
// Iterate through the statements of the compound statement in reverse
// order. Because this statement may contain statements that have
// complicated control flow, the value of "Block" may change at any
// time. This means that statements in the compound statement will
// automatically be distributed across multiple basic blocks when
// necessary.
CompoundStmt* C = cast<CompoundStmt>(Statement);
for (CompoundStmt::reverse_body_iterator I = C->body_rbegin(),
E = C->body_rend(); I != E; ++I )
// Add the statement to the current block.
if (!visitStmt(*I)) return NULL;
break;
}
case Stmt::IfStmtClass: {
IfStmt* I = cast<IfStmt>(Statement);
// We may see an if statement in the middle of a basic block, or
// it may be the first statement we are processing. In either case,
// we create a new basic block. First, we create the blocks for
// the then...else statements, and then we create the block containing
// the if statement. If we were in the middle of a block, we
// stop processing that block and reverse its statements. That block
// is then the implicit successor for the "then" and "else" clauses.
// The block we were proccessing is now finished. Make it the
// successor block.
if (Block) {
Succ = Block;
Block->reverseStmts();
}
// Process the false branch. NULL out Block so that the recursive
// call to visitStmt will create a new basic block.
// Null out Block so that all successor
CFGBlock* ElseBlock = Succ;
if (Stmt* Else = I->getElse()) {
SaveAndRestore<CFGBlock*> sv(Succ);
// NULL out Block so that the recursive call to visitStmt will
// create a new basic block.
Block = NULL;
ElseBlock = visitStmt(Else);
if (!ElseBlock) return NULL;
ElseBlock->reverseStmts();
}
// Process the true branch. NULL out Block so that the recursive
// call to visitStmt will create a new basic block.
// Null out Block so that all successor
CFGBlock* ThenBlock;
{
Stmt* Then = I->getThen();
assert (Then);
SaveAndRestore<CFGBlock*> sv(Succ);
Block = NULL;
ThenBlock = visitStmt(Then);
if (!ThenBlock) return NULL;
ThenBlock->reverseStmts();
}
// Now create a new block containing the if statement.
Block = createBlock(false);
// Add the condition as the last statement in the new block.
Block->appendStmt(I->getCond());
// Set the terminator of the new block to the If statement.
Block->setTerminator(I);
// Now add the successors.
Block->addSuccessor(ThenBlock);
Block->addSuccessor(ElseBlock);
break;
}
case Stmt::ReturnStmtClass: {
ReturnStmt* R = cast<ReturnStmt>(Statement);
// If we were in the middle of a block we stop processing that block
// and reverse its statements.
//
// NOTE: If a "return" appears in the middle of a block, this means
// that the code afterwards is DEAD (unreachable). We still
// keep a basic block for that code; a simple "mark-and-sweep"
// from the entry block will be able to report such dead
// blocks.
if (Block) Block->reverseStmts();
// Create the new block.
Block = createBlock(false);
// The Exit block is the only successor.
Block->addSuccessor(Exit);
// Add the return expression to the block.
Block->appendStmt(R);
// Add the return statement itself to the block.
if (R->getRetValue()) Block->appendStmt(R->getRetValue());
break;
}
} // end dispatch on statement class
/// Here we handle statements with no branching control flow.
CFGBlock* VisitStmt(Stmt* Statement) {
// We cannot assume that we are in the middle of a basic block, since
// the CFG might only be constructed for this single statement. If
// we have no current basic block, just create one lazily.
if (!Block) Block = createBlock();
// Simply add the statement to the current block. We actually
// insert statements in reverse order; this order is reversed later
// when processing the containing element in the AST.
Block->appendStmt(Statement);
return Block;
}
CFGBlock* VisitCompoundStmt(CompoundStmt* C) {
// The value returned from this function is the last created CFGBlock
// that represents the "entry" point for the translated AST node.
for (CompoundStmt::reverse_body_iterator I = C->body_rbegin(),
E = C->body_rend(); I != E; ++I )
// Add the statement to the current block.
if (!Visit(*I)) return NULL;
return Block;
}
CFGBlock* VisitIfStmt(IfStmt* I) {
// We may see an if statement in the middle of a basic block, or
// it may be the first statement we are processing. In either case,
// we create a new basic block. First, we create the blocks for
// the then...else statements, and then we create the block containing
// the if statement. If we were in the middle of a block, we
// stop processing that block and reverse its statements. That block
// is then the implicit successor for the "then" and "else" clauses.
// The block we were proccessing is now finished. Make it the
// successor block.
if (Block) {
Succ = Block;
Block->reverseStmts();
}
// Process the false branch. NULL out Block so that the recursive
// call to Visit will create a new basic block.
// Null out Block so that all successor
CFGBlock* ElseBlock = Succ;
if (Stmt* Else = I->getElse()) {
SaveAndRestore<CFGBlock*> sv(Succ);
// NULL out Block so that the recursive call to Visit will
// create a new basic block.
Block = NULL;
ElseBlock = Visit(Else);
if (!ElseBlock) return NULL;
ElseBlock->reverseStmts();
}
// Process the true branch. NULL out Block so that the recursive
// call to Visit will create a new basic block.
// Null out Block so that all successor
CFGBlock* ThenBlock;
{
Stmt* Then = I->getThen();
assert (Then);
SaveAndRestore<CFGBlock*> sv(Succ);
Block = NULL;
ThenBlock = Visit(Then);
if (!ThenBlock) return NULL;
ThenBlock->reverseStmts();
}
// Now create a new block containing the if statement.
Block = createBlock(false);
// Add the condition as the last statement in the new block.
Block->appendStmt(I->getCond());
// Set the terminator of the new block to the If statement.
Block->setTerminator(I);
// Now add the successors.
Block->addSuccessor(ThenBlock);
Block->addSuccessor(ElseBlock);
return Block;
}
CFGBlock* VisitReturnStmt(ReturnStmt* R) {
// If we were in the middle of a block we stop processing that block
// and reverse its statements.
//
// NOTE: If a "return" appears in the middle of a block, this means
// that the code afterwards is DEAD (unreachable). We still
// keep a basic block for that code; a simple "mark-and-sweep"
// from the entry block will be able to report such dead
// blocks.
if (Block) Block->reverseStmts();
// Create the new block.
Block = createBlock(false);
// The Exit block is the only successor.
Block->addSuccessor(Exit);
// Add the return expression to the block.
Block->appendStmt(R);
// Add the return statement itself to the block.
if (R->getRetValue()) Block->appendStmt(R->getRetValue());
return Block;
}
};
// BuildCFG - A helper function that builds CFGs from ASTS.
CFG* CFG::BuildCFG( Stmt* Statement ) {
CFG* CFG::BuildCFG(Stmt* Statement) {
CFGBuilder Builder;
return Builder.buildCFG(Statement);
}