Change the RewriteRope::Chunks data structure from an std::list into

a nice shiny B+ Tree variant.  This fixes the last of the known algorithmic
issues with the rewriter, allowing a significant speedup.  For example,
-emit-html on Ted's 500K .i file speeds up from 26.8s -> 0.64s in a 
debug build (41x!) and 5.475s -> 0.132s (41x!) in an optimized build.

This code is functional but needs to be cleaned up, ifdefs removed, better
commented, and moved to a .cpp file.  I plan to do this tomorrow.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@49635 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2008-04-14 07:17:29 +00:00
Родитель e7722103ab
Коммит febe719596
3 изменённых файлов: 779 добавлений и 19 удалений

Просмотреть файл

@ -18,11 +18,24 @@
#include <list>
#include <cstring>
#include "llvm/Support/Casting.h"
//#define USE_ROPE_VECTOR
namespace clang {
struct RopeRefCountString {
unsigned RefCount;
char Data[1]; // Variable sized.
void addRef() {
if (this) ++RefCount;
}
void dropRef() {
if (this && --RefCount == 0)
delete [] (char*)this;
}
};
struct RopePiece {
@ -30,18 +43,29 @@ struct RopePiece {
unsigned StartOffs;
unsigned EndOffs;
RopePiece() : StrData(0), StartOffs(0), EndOffs(0) {}
RopePiece(RopeRefCountString *Str, unsigned Start, unsigned End)
: StrData(Str), StartOffs(Start), EndOffs(End) {
++StrData->RefCount;
StrData->addRef();
}
RopePiece(const RopePiece &RP)
: StrData(RP.StrData), StartOffs(RP.StartOffs), EndOffs(RP.EndOffs) {
++StrData->RefCount;
StrData->addRef();
}
~RopePiece() {
if (--StrData->RefCount == 0)
delete [] (char*)StrData;
StrData->dropRef();
}
void operator=(const RopePiece &RHS) {
if (StrData != RHS.StrData) {
StrData->dropRef();
StrData = RHS.StrData;
StrData->addRef();
}
StartOffs = RHS.StartOffs;
EndOffs = RHS.EndOffs;
}
const char &operator[](unsigned Offset) const {
@ -54,7 +78,667 @@ struct RopePiece {
unsigned size() const { return EndOffs-StartOffs; }
};
class RewriteRope;
#ifndef USE_ROPE_VECTOR
using llvm::dyn_cast;
using llvm::cast;
/// This is an adapted B+ Tree, ... erases don't keep the tree balanced.
class RopePieceBTreeNode;
struct InsertResult {
RopePieceBTreeNode *LHS, *RHS;
};
class RopePieceBTreeNode {
protected:
/// WidthFactor - This controls the number of K/V slots held in the BTree:
/// how wide it is. Each level of the BTree is guaranteed to have at least
/// 'WidthFactor' elements in it (either ropepieces or children), (except the
/// root, which may have less) and may have at most 2*WidthFactor elements.
enum { WidthFactor = 8 };
/// Size - This is the number of bytes of file this node (including any
/// potential children) covers.
unsigned Size;
/// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it is
/// an instance of RopePieceBTreeInterior.
bool IsLeaf;
RopePieceBTreeNode(bool isLeaf) : IsLeaf(isLeaf) {}
~RopePieceBTreeNode() {}
public:
bool isLeaf() const { return IsLeaf; }
unsigned size() const { return Size; }
void Destroy();
/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset. The offset is relative, so "0" is the start of the node. This
/// returns true if the insertion could not be done in place, and returns
/// information in 'Res' about the piece that is percolated up.
bool split(unsigned Offset, InsertResult *Res);
/// insert - Insert the specified ropepiece into this tree node at the
/// specified offset. The offset is relative, so "0" is the start of the
/// node. This returns true if the insertion could not be done in place, and
/// returns information in 'Res' about the piece that is percolated up.
bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res);
/// erase - Remove NumBytes from this node at the specified offset. We are
/// guaranteed that there is a split at Offset.
void erase(unsigned Offset, unsigned NumBytes);
static inline bool classof(const RopePieceBTreeNode *) { return true; }
};
class RopePieceBTreeLeaf : public RopePieceBTreeNode {
/// NumPieces - This holds the number of rope pieces currently active in the
/// Pieces array.
unsigned char NumPieces;
/// Pieces - This tracks the file chunks currently in this leaf.
///
RopePiece Pieces[2*WidthFactor];
/// NextLeaf - This is a pointer to the next leaf in the tree, allowing
/// efficient in-order forward iteration of the tree without traversal.
const RopePieceBTreeLeaf *NextLeaf;
public:
RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NextLeaf(0) {}
bool isFull() const { return NumPieces == 2*WidthFactor; }
/// clear - Remove all rope pieces from this leaf.
void clear() {
while (NumPieces)
Pieces[--NumPieces] = RopePiece();
Size = 0;
}
unsigned getNumPieces() const { return NumPieces; }
const RopePiece &getPiece(unsigned i) const {
assert(i < getNumPieces() && "Invalid piece ID");
return Pieces[i];
}
const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
void setNextLeafInOrder(const RopePieceBTreeLeaf *NL) { NextLeaf = NL; }
void FullRecomputeSizeLocally() {
Size = 0;
for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
Size += getPiece(i).size();
}
/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset. The offset is relative, so "0" is the start of the node. This
/// returns true if the insertion could not be done in place, and returns
/// information in 'Res' about the piece that is percolated up.
bool split(unsigned Offset, InsertResult *Res);
/// insert - Insert the specified ropepiece into this tree node at the
/// specified offset. The offset is relative, so "0" is the start of the
/// node. This returns true if the insertion could not be done in place, and
/// returns information in 'Res' about the piece that is percolated up.
bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res);
/// erase - Remove NumBytes from this node at the specified offset. We are
/// guaranteed that there is a split at Offset.
void erase(unsigned Offset, unsigned NumBytes);
static inline bool classof(const RopePieceBTreeLeaf *) { return true; }
static inline bool classof(const RopePieceBTreeNode *N) {
return N->isLeaf();
}
};
/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset. The offset is relative, so "0" is the start of the node. This
/// returns true if the insertion could not be done in place, and returns
/// information in 'Res' about the piece that is percolated up.
inline bool RopePieceBTreeLeaf::split(unsigned Offset, InsertResult *Res) {
// Find the insertion point. We are guaranteed that there is a split at the
// specified offset so find it.
if (Offset == 0 || Offset == size()) {
// Fastpath for a common case. There is already a splitpoint at the end.
return false;
}
// Find the piece that this offset lands in.
unsigned PieceOffs = 0;
unsigned i = 0;
while (Offset >= PieceOffs+Pieces[i].size()) {
PieceOffs += Pieces[i].size();
++i;
}
// If there is already a split point at the specified offset, just return
// success.
if (PieceOffs == Offset)
return false;
// Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
// to being Piece relative.
unsigned IntraPieceOffset = Offset-PieceOffs;
// We do this by shrinking the RopePiece and then doing an insert of the tail.
RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
Pieces[i].EndOffs);
Size -= Pieces[i].size();
Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
Size += Pieces[i].size();
return insert(Offset, Tail, Res);
}
/// insert - Insert the specified RopePiece into this tree node at the
/// specified offset. The offset is relative, so "0" is the start of the
/// node. This returns true if the insertion could not be done in place, and
/// returns information in 'Res' about the piece that is percolated up.
inline bool RopePieceBTreeLeaf::insert(unsigned Offset, const RopePiece &R,
InsertResult *Res) {
// If this node is not full, insert the piece.
if (!isFull()) {
// Find the insertion point. We are guaranteed that there is a split at the
// specified offset so find it.
unsigned i = 0, e = getNumPieces();
if (Offset == size()) {
// Fastpath for a common case.
i = e;
} else {
unsigned SlotOffs = 0;
for (; Offset > SlotOffs; ++i)
SlotOffs += getPiece(i).size();
assert(SlotOffs == Offset && "Split didn't occur before insertion!");
}
// For an insertion into a non-full leaf node, just insert the value in
// its sorted position. This requires moving later values over.
for (; i != e; --e)
Pieces[e] = Pieces[e-1];
Pieces[i] = R;
++NumPieces;
Size += R.size();
return false;
}
// Otherwise, if this is leaf is full, split it in two halves. Since this
// node is full, it contains 2*WidthFactor values. We move the first
// 'WidthFactor' values to the LHS child (which we leave in this node) and
// move the last 'WidthFactor' values into the RHS child.
// Create the new node.
RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
// Move over the last 'WidthFactor' values from here to NewNode.
std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
&NewNode->Pieces[0]);
// Replace old pieces with null RopePieces to drop refcounts.
std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
// Decrease the number of values in the two nodes.
NewNode->NumPieces = NumPieces = WidthFactor;
// Recompute the two nodes' size.
NewNode->FullRecomputeSizeLocally();
FullRecomputeSizeLocally();
// Update the list of leaves.
NewNode->setNextLeafInOrder(this->getNextLeafInOrder());
this->setNextLeafInOrder(NewNode);
assert(Res && "No result location specified");
Res->LHS = this;
Res->RHS = NewNode;
if (this->size() >= Offset)
this->insert(Offset, R, 0 /*can't fail*/);
else
NewNode->insert(Offset - this->size(), R, 0 /*can't fail*/);
return true;
}
/// erase - Remove NumBytes from this node at the specified offset. We are
/// guaranteed that there is a split at Offset.
inline void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
// Since we are guaranteed that there is a split at Offset, we start by
// finding the Piece that starts there.
unsigned PieceOffs = 0;
unsigned i = 0;
for (; Offset > PieceOffs; ++i)
PieceOffs += getPiece(i).size();
assert(PieceOffs == Offset && "Split didn't occur before erase!");
unsigned StartPiece = i;
// Figure out how many pieces completely cover 'NumBytes'. We want to remove
// all of them.
for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
PieceOffs += getPiece(i).size();
// If we exactly include the last one, include it in the region to delete.
if (Offset+NumBytes == PieceOffs+getPiece(i).size())
PieceOffs += getPiece(i).size(), ++i;
// If we completely cover some RopePieces, erase them now.
if (i != StartPiece) {
unsigned NumDeleted = i-StartPiece;
for (; i != getNumPieces(); ++i)
Pieces[i-NumDeleted] = Pieces[i];
// Drop references to dead rope pieces.
std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
RopePiece());
NumPieces -= NumDeleted;
unsigned CoverBytes = PieceOffs-Offset;
NumBytes -= CoverBytes;
Size -= CoverBytes;
}
// If we completely removed some stuff, we could be done.
if (NumBytes == 0) return;
// Okay, now might be erasing part of some Piece. If this is the case, then
// move the start point of the piece.
assert(getPiece(StartPiece).size() > NumBytes);
Pieces[StartPiece].StartOffs += NumBytes;
// The size of this node just shrunk by NumBytes.
Size -= NumBytes;
}
// Holds up to 2*WidthFactor children.
class RopePieceBTreeInterior : public RopePieceBTreeNode {
/// NumChildren - This holds the number of children currently active in the
/// Children array.
unsigned char NumChildren;
RopePieceBTreeNode *Children[2*WidthFactor];
public:
RopePieceBTreeInterior() : RopePieceBTreeNode(false) {}
RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
: RopePieceBTreeNode(false) {
Children[0] = LHS;
Children[1] = RHS;
NumChildren = 2;
Size = LHS->size() + RHS->size();
}
bool isFull() const { return NumChildren == 2*WidthFactor; }
unsigned getNumChildren() const { return NumChildren; }
const RopePieceBTreeNode *getChild(unsigned i) const {
assert(i < NumChildren && "invalid child #");
return Children[i];
}
RopePieceBTreeNode *getChild(unsigned i) {
assert(i < NumChildren && "invalid child #");
return Children[i];
}
void FullRecomputeSizeLocally() {
Size = 0;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
Size += getChild(i)->size();
}
/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset. The offset is relative, so "0" is the start of the node. This
/// returns true if the insertion could not be done in place, and returns
/// information in 'Res' about the piece that is percolated up.
bool split(unsigned Offset, InsertResult *Res);
/// insert - Insert the specified ropepiece into this tree node at the
/// specified offset. The offset is relative, so "0" is the start of the
/// node. This returns true if the insertion could not be done in place, and
/// returns information in 'Res' about the piece that is percolated up.
bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res);
/// HandleChildPiece - A child propagated an insertion result up to us.
/// Insert the new child, and/or propagate the result further up the tree.
bool HandleChildPiece(unsigned i, InsertResult &Res);
/// erase - Remove NumBytes from this node at the specified offset. We are
/// guaranteed that there is a split at Offset.
void erase(unsigned Offset, unsigned NumBytes);
static inline bool classof(const RopePieceBTreeInterior *) { return true; }
static inline bool classof(const RopePieceBTreeNode *N) {
return !N->isLeaf();
}
};
/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset. The offset is relative, so "0" is the start of the node. This
/// returns true if the insertion could not be done in place, and returns
/// information in 'Res' about the piece that is percolated up.
inline bool RopePieceBTreeInterior::split(unsigned Offset, InsertResult *Res) {
// Figure out which child to split.
if (Offset == 0 || Offset == size())
return false; // If we have an exact offset, we're already split.
unsigned ChildOffset = 0;
unsigned i = 0;
for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
ChildOffset += getChild(i)->size();
// If already split there, we're done.
if (ChildOffset == Offset)
return false;
// Otherwise, recursively split the child.
if (getChild(i)->split(Offset-ChildOffset, Res))
return HandleChildPiece(i, *Res);
return false; // Done!
}
/// insert - Insert the specified ropepiece into this tree node at the
/// specified offset. The offset is relative, so "0" is the start of the
/// node. This returns true if the insertion could not be done in place, and
/// returns information in 'Res' about the piece that is percolated up.
inline bool RopePieceBTreeInterior::insert(unsigned Offset, const RopePiece &R,
InsertResult *Res) {
// Find the insertion point. We are guaranteed that there is a split at the
// specified offset so find it.
unsigned i = 0, e = getNumChildren();
unsigned ChildOffs = 0;
if (Offset == size()) {
// Fastpath for a common case. Insert at end of last child.
i = e-1;
ChildOffs = size()-getChild(i)->size();
} else {
for (; Offset > ChildOffs+getChild(i)->size(); ++i)
ChildOffs += getChild(i)->size();
}
Size += R.size();
// Insert at the end of this child.
if (getChild(i)->insert(Offset-ChildOffs, R, Res))
return HandleChildPiece(i, *Res);
return false;
}
/// HandleChildPiece - A child propagated an insertion result up to us.
/// Insert the new child, and/or propagate the result further up the tree.
inline bool RopePieceBTreeInterior::HandleChildPiece(unsigned i,
InsertResult &Res) {
// Otherwise the child propagated a subtree up to us as a new child. See if
// we have space for it here.
if (!isFull()) {
// Replace child 'i' with the two children specified in Res.
if (i + 1 != getNumChildren())
memmove(&Children[i+2], &Children[i+1],
(getNumChildren()-i-1)*sizeof(Children[0]));
Children[i] = Res.LHS;
Children[i+1] = Res.RHS;
++NumChildren;
return false;
}
// Okay, this node is full. Split it in half, moving WidthFactor children to
// a newly allocated interior node.
// Create the new node.
RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
// Move over the last 'WidthFactor' values from here to NewNode.
memcpy(&NewNode->Children[0], &Children[WidthFactor],
WidthFactor*sizeof(Children[0]));
// Decrease the number of values in the two nodes.
NewNode->NumChildren = NumChildren = WidthFactor;
// Finally, insert the two new children in the side the can (now) hold them.
if (i < WidthFactor)
this->HandleChildPiece(i, Res);
else
NewNode->HandleChildPiece(i-WidthFactor, Res);
// Recompute the two nodes' size.
NewNode->FullRecomputeSizeLocally();
FullRecomputeSizeLocally();
Res.LHS = this;
Res.RHS = NewNode;
return true;
}
/// erase - Remove NumBytes from this node at the specified offset. We are
/// guaranteed that there is a split at Offset.
inline void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
// This will shrink this node by NumBytes.
Size -= NumBytes;
// Find the first child that overlaps with Offset.
unsigned i = 0;
for (; Offset >= getChild(i)->size(); ++i)
Offset -= getChild(i)->size();
// Propagate the delete request into overlapping children, or completely
// delete the children as appropriate.
while (NumBytes) {
RopePieceBTreeNode *CurChild = getChild(i);
// If we are deleting something contained entirely in the child, pass on the
// request.
if (Offset+NumBytes < CurChild->size()) {
CurChild->erase(Offset, NumBytes);
return;
}
// If this deletion request starts somewhere in the middle of the child, it
// must be deleting to the end of the child.
if (Offset) {
unsigned BytesFromChild = CurChild->size()-Offset;
CurChild->erase(Offset, BytesFromChild);
NumBytes -= BytesFromChild;
++i;
continue;
}
// If the deletion request completely covers the child, delete it and move
// the rest down.
NumBytes -= CurChild->size();
CurChild->Destroy();
--NumChildren;
if (i+1 != getNumChildren())
memmove(&Children[i], &Children[i+1],
(getNumChildren()-i)*sizeof(Children[0]));
}
}
inline void RopePieceBTreeNode::Destroy() {
if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
delete Leaf;
else
delete cast<RopePieceBTreeInterior>(this);
}
/// split - Split the range containing the specified offset so that we are
/// guaranteed that there is a place to do an insertion at the specified
/// offset. The offset is relative, so "0" is the start of the node. This
/// returns true if the insertion could not be done in place, and returns
/// information in 'Res' about the piece that is percolated up.
inline bool RopePieceBTreeNode::split(unsigned Offset, InsertResult *Res) {
assert(Offset <= size() && "Invalid offset to split!");
if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
return Leaf->split(Offset, Res);
return cast<RopePieceBTreeInterior>(this)->split(Offset, Res);
}
/// insert - Insert the specified ropepiece into this tree node at the
/// specified offset. The offset is relative, so "0" is the start of the
/// node.
inline bool RopePieceBTreeNode::insert(unsigned Offset, const RopePiece &R,
InsertResult *Res) {
assert(Offset <= size() && "Invalid offset to insert!");
if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
return Leaf->insert(Offset, R, Res);
return cast<RopePieceBTreeInterior>(this)->insert(Offset, R, Res);
}
/// erase - Remove NumBytes from this node at the specified offset. We are
/// guaranteed that there is a split at Offset.
inline void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
return Leaf->erase(Offset, NumBytes);
return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
}
/// RewritePieceBTreeIterator - Provide read-only forward iteration.
class RewritePieceBTreeIterator :
public forward_iterator<const char, ptrdiff_t> {
/// CurNode - The current B+Tree node that we are inspecting.
const RopePieceBTreeLeaf *CurNode;
/// CurPiece - The current RopePiece in the B+Tree node that we're inspecting.
const RopePiece *CurPiece;
/// CurChar - The current byte in the RopePiece we are pointing to.
unsigned CurChar;
friend class RewriteRope;
public:
RewritePieceBTreeIterator(const RopePieceBTreeNode *N) { // begin iterator.
// Walk down the left side of the tree until we get to a leaf.
while (const RopePieceBTreeInterior *IN =
dyn_cast<RopePieceBTreeInterior>(N))
N = IN->getChild(0);
// We must have at least one leaf.
CurNode = cast<RopePieceBTreeLeaf>(N);
// If we found a leaf that happens to be empty, skip over it until we get to
// something full.
while (CurNode && CurNode->getNumPieces() == 0)
CurNode = CurNode->getNextLeafInOrder();
if (CurNode != 0)
CurPiece = &CurNode->getPiece(0);
else // Empty tree, this is an end() iterator.
CurPiece = 0;
CurChar = 0;
}
// end iterator
RewritePieceBTreeIterator() : CurNode(0), CurPiece(0), CurChar(0) {}
const char operator*() const {
return (*CurPiece)[CurChar];
}
bool operator==(const RewritePieceBTreeIterator &RHS) const {
return CurPiece == RHS.CurPiece && CurChar == RHS.CurChar;
}
bool operator!=(const RewritePieceBTreeIterator &RHS) const {
return !operator==(RHS);
}
inline RewritePieceBTreeIterator& operator++() { // Preincrement
if (CurChar+1 < CurPiece->size())
++CurChar;
else if (CurPiece != &CurNode->getPiece(CurNode->getNumPieces()-1)) {
CurChar = 0;
++CurPiece;
} else {
// Find the next non-empty leaf node.
do
CurNode = CurNode->getNextLeafInOrder();
while (CurNode && CurNode->getNumPieces() == 0);
if (CurNode != 0)
CurPiece = &CurNode->getPiece(0);
else // Hit end().
CurPiece = 0;
CurChar = 0;
}
return *this;
}
inline RewritePieceBTreeIterator operator++(int) { // Postincrement
RewritePieceBTreeIterator tmp = *this; ++*this; return tmp;
}
};
class RopePieceBTree {
RopePieceBTreeNode *Root;
void operator=(const RopePieceBTree &); // DO NOT IMPLEMENT
public:
RopePieceBTree() {
Root = new RopePieceBTreeLeaf();
}
RopePieceBTree(const RopePieceBTree &RHS) {
assert(RHS.empty() && "Can't copy non-empty tree yet");
Root = new RopePieceBTreeLeaf();
}
~RopePieceBTree() {
Root->Destroy();
}
typedef RewritePieceBTreeIterator iterator;
iterator begin() const { return iterator(Root); }
iterator end() const { return iterator(); }
unsigned size() const { return Root->size(); }
unsigned empty() const { return size() == 0; }
void clear() {
if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(Root))
Leaf->clear();
else {
Root->Destroy();
Root = new RopePieceBTreeLeaf();
}
}
void insert(unsigned Offset, const RopePiece &R) {
InsertResult Result;
// #1. Split at Offset.
if (Root->split(Offset, &Result))
Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS);
// #2. Do the insertion.
if (Root->insert(Offset, R, &Result))
Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS);
}
void erase(unsigned Offset, unsigned NumBytes) {
InsertResult Result;
// #1. Split at Offset.
if (Root->split(Offset, &Result))
Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS);
// #2. Do the erasing.
Root->erase(Offset, NumBytes);
}
};
#endif // ifndef USE_ROPE_VECTOR
#ifdef USE_ROPE_VECTOR
class RewriteRope;
template <typename CharType, typename PieceIterType>
class RewriteRopeIterator :
@ -105,15 +789,19 @@ public:
RewriteRopeIterator tmp = *this; ++*this; return tmp;
}
};
#endif
/// RewriteRope - A powerful string class, todo generalize this.
class RewriteRope {
#ifdef USE_ROPE_VECTOR
// FIXME: This could be significantly faster by using a balanced binary tree
// instead of a list.
std::list<RopePiece> Chunks;
unsigned CurSize;
#else
RopePieceBTree Chunks;
#endif
/// We allocate space for string data out of a buffer of size AllocChunkSize.
/// This keeps track of how much space is left.
@ -122,9 +810,24 @@ class RewriteRope {
enum { AllocChunkSize = 4080 };
public:
RewriteRope() : CurSize(0), AllocBuffer(0), AllocOffs(AllocChunkSize) {}
~RewriteRope() { clear(); }
RewriteRope() :
#ifdef USE_ROPE_VECTOR
CurSize(0),
#endif
AllocBuffer(0), AllocOffs(AllocChunkSize) {}
RewriteRope(const RewriteRope &RHS) : Chunks(RHS.Chunks),
#ifdef USE_ROPE_VECTOR
CurSize(RHS.CurSize),
#endif
AllocBuffer(0), AllocOffs(AllocChunkSize) {
}
~RewriteRope() {
// If we had an allocation buffer, drop our reference to it.
AllocBuffer->dropRef();
}
#ifdef USE_ROPE_VECTOR
typedef RewriteRopeIterator<char, std::list<RopePiece>::iterator> iterator;
typedef RewriteRopeIterator<const char,
std::list<RopePiece>::const_iterator> const_iterator;
@ -135,12 +838,39 @@ public:
const_iterator end() const { return const_iterator(Chunks.end(), 0); }
unsigned size() const { return CurSize; }
#else
typedef RopePieceBTree::iterator iterator;
typedef RopePieceBTree::iterator const_iterator;
iterator begin() const { return Chunks.begin(); }
iterator end() const { return Chunks.end(); }
unsigned size() const { return Chunks.size(); }
#endif
void clear() {
Chunks.clear();
CurSize = 0;
#ifdef USE_ROPE_VECTOR
CurSize = 0;
#endif
}
#ifndef USE_ROPE_VECTOR
void assign(const char *Start, const char *End) {
clear();
Chunks.insert(0, MakeRopeString(Start, End));
}
void insert(unsigned Offset, const char *Start, const char *End) {
if (Start == End) return;
Chunks.insert(Offset, MakeRopeString(Start, End));
}
void erase(unsigned Offset, unsigned NumBytes) {
if (NumBytes == 0) return;
Chunks.erase(Offset, NumBytes);
}
#endif
#ifdef USE_ROPE_VECTOR
void assign(const char *Start, const char *End) {
clear();
Chunks.push_back(MakeRopeString(Start, End));
@ -236,6 +966,7 @@ public:
CurSize -= End.CurChar;
}
}
#endif
private:
RopePiece MakeRopeString(const char *Start, const char *End) {
@ -261,14 +992,25 @@ private:
// Otherwise, this was a small request but we just don't have space for it
// Make a new chunk and share it with later allocations.
// If we had an old allocation, drop our reference to it.
if (AllocBuffer && --AllocBuffer->RefCount == 0)
delete [] (char*)AllocBuffer;
unsigned AllocSize = sizeof(RopeRefCountString)-1+AllocChunkSize;
AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
AllocBuffer->RefCount = 0;
memcpy(AllocBuffer->Data, Start, Len);
AllocOffs = Len;
// Start out the new allocation with a refcount of 1, since we have an
// internal reference to it.
AllocBuffer->addRef();
return RopePiece(AllocBuffer, 0, Len);
}
#ifdef USE_ROPE_VECTOR
/// SplitAt - If the specified iterator position has a non-zero character
/// number, split the specified buffer up. This guarantees that the specified
/// iterator is at the start of a chunk. Return the chunk it is at the start
@ -293,6 +1035,7 @@ private:
// Return the old chunk, which is the suffix.
return Chunk;
}
#endif
};
} // end namespace clang

Просмотреть файл

@ -58,10 +58,12 @@ namespace {
} // end anonymous namespace
struct InsertResult {
DeltaTreeNode *LHS, *RHS;
SourceDelta Split;
};
namespace {
struct InsertResult {
DeltaTreeNode *LHS, *RHS;
SourceDelta Split;
};
} // end anonymous namespace
namespace {
@ -72,8 +74,8 @@ namespace {
/// WidthFactor - This controls the number of K/V slots held in the BTree:
/// how wide it is. Each level of the BTree is guaranteed to have at least
/// WidthFactor-1 K/V pairs (unless the whole tree is less full than that)
/// and may have at most 2*WidthFactor-1 K/V pairs.
/// WidthFactor-1 K/V pairs (except the root) and may have at most
/// 2*WidthFactor-1 K/V pairs.
enum { WidthFactor = 8 };
/// Values - This tracks the SourceDelta's currently in this node.

Просмотреть файл

@ -27,8 +27,12 @@ void RewriteBuffer::RemoveText(unsigned OrigOffset, unsigned Size) {
assert(RealOffset+Size < Buffer.size() && "Invalid location");
// Remove the dead characters.
#ifdef USE_ROPE_VECTOR
RewriteRope::iterator I = Buffer.getAtOffset(RealOffset);
Buffer.erase(I, I+Size);
#else
Buffer.erase(RealOffset, Size);
#endif
// Add a delta so that future changes are offset correctly.
AddDelta(OrigOffset, -Size);
@ -42,21 +46,27 @@ void RewriteBuffer::InsertText(unsigned OrigOffset,
if (StrLen == 0) return;
unsigned RealOffset = getMappedOffset(OrigOffset, InsertAfter);
#ifdef USE_ROPE_VECTOR
assert(RealOffset <= Buffer.size() && "Invalid location");
// Insert the new characters.
Buffer.insert(Buffer.getAtOffset(RealOffset), StrData, StrData+StrLen);
#else
Buffer.insert(RealOffset, StrData, StrData+StrLen);
#endif
// Add a delta so that future changes are offset correctly.
AddDelta(OrigOffset, StrLen);
}
/// ReplaceText - This method replaces a range of characters in the input
/// buffer with a new string. This is effectively a combined "remove/insert"
/// buffer with a new string. This is effectively a combined "remove+insert"
/// operation.
void RewriteBuffer::ReplaceText(unsigned OrigOffset, unsigned OrigLength,
const char *NewStr, unsigned NewLength) {
unsigned RealOffset = getMappedOffset(OrigOffset, true);
#ifdef USE_ROPE_VECTOR
assert(RealOffset+OrigLength <= Buffer.size() && "Invalid location");
// Overwrite the common piece.
@ -76,7 +86,12 @@ void RewriteBuffer::ReplaceText(unsigned OrigOffset, unsigned OrigLength,
RewriteRope::iterator I = Buffer.getAtOffset(RealOffset+NewLength);
Buffer.erase(I, I+(OrigLength-NewLength));
}
AddDelta(OrigOffset, NewLength-OrigLength);
#else
Buffer.erase(RealOffset, OrigLength);
Buffer.insert(RealOffset, NewStr, NewStr+NewLength);
#endif
if (OrigLength != NewLength)
AddDelta(OrigOffset, NewLength-OrigLength);
}