as well as some significant asymptotic inefficiencies with threading
multiple jumps through deep cleanups.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@109274 91177308-0d34-0410-b5e6-96231b3b80d8
mostly in avoiding unnecessary work at compile time but also in producing more
sensible block orderings.
Move the destructor cleanups for local variables over to use lazy cleanups.
Eventually all cleanups will do this; for now we have some awkward code
duplication.
Tell IR generation just to never produce landing pads in -fno-exceptions.
This is a much more comprehensive solution to a problem which previously was
half-solved by checks in most cleanup-generation spots.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@108270 91177308-0d34-0410-b5e6-96231b3b80d8
self-host. Hopefully these results hold up on different platforms.
I tried to keep the GNU ObjC runtime happy, but it's hard for me to test.
Reimplement how clang generates IR for exceptions. Instead of creating new
invoke destinations which sequentially chain to the previous destination,
push a more semantic representation of *why* we need the cleanup/catch/filter
behavior, then collect that information into a single landing pad upon request.
Also reorganizes how normal cleanups (i.e. cleanups triggered by non-exceptional
control flow) are generated, since it's actually fairly closely tied in with
the former. Remove the need to track which cleanup scope a block is associated
with.
Document a lot of previously poorly-understood (by me, at least) behavior.
The new framework implements the Horrible Hack (tm), which requires every
landing pad to have a catch-all so that inlining will work. Clang no longer
requires the Horrible Hack just to make exceptions flow correctly within
a function, however. The HH is an unfortunate requirement of LLVM's EH IR.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@107631 91177308-0d34-0410-b5e6-96231b3b80d8