instantiation, to ensure that we mark class template specilizations as
abstract when we need to and perform checking of abstract classes.
Also, move the checking that determines whether we are creating a
variable of abstract class type *after* we check whether the type is
complete. Otherwise, we won't see when we have an abstract class
template specialization that is implicitly instantiated by this
declaration. This is the "something else" that Sebastian had noted
earlier.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@90467 91177308-0d34-0410-b5e6-96231b3b80d8
LookupResult::getAsSingleDecl() is no more. Shift Sema::LookupSingleName to
return null on overloaded results.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@90309 91177308-0d34-0410-b5e6-96231b3b80d8
leaked data structure than before. This kills off the last remaining
explicit uses of OverloadedFunctionDecl in Sema.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@90306 91177308-0d34-0410-b5e6-96231b3b80d8
common to both parsing and template instantiation, so that we'll find
overridden virtuals for member functions of class templates when they
are instantiated.
Additionally, factor out the checking for pure virtual functions, so
that it will be executed both at parsing time and at template
instantiation time.
These changes fix PR5656 (for real), although one more tweak
w.r.t. member function templates will be coming along shortly.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@90241 91177308-0d34-0410-b5e6-96231b3b80d8
Create a new UnresolvedMemberExpr for these lookups. Assorted hackery
around qualified member expressions; this will all go away when we
implement the correct (i.e. extremely delayed) implicit-member semantics.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@90161 91177308-0d34-0410-b5e6-96231b3b80d8
function names outside of templates - they'll probably cause some damage there as
they're largely untested.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@90064 91177308-0d34-0410-b5e6-96231b3b80d8
function templates (in C++98), friend function templates, and
out-of-line definitions of members of class templates.
Also handles merging of default template arguments from previous
declarations of function templates, for C++0x. However, we don't yet
make use of those default template arguments.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@89872 91177308-0d34-0410-b5e6-96231b3b80d8
type and fixes a long-standing code gen. crash reported in
at least two PRs and a radar. (radar 7405040 and pr5025).
There are couple of remaining issues that I would like for
Ted. and Doug to look at:
Ted, please look at failure in Analysis/MissingDealloc.m.
I have temporarily added an expected-warning to make the
test pass. This tests has a declaration of 'SEL' type which
may not co-exist with the new changes.
Doug, please look at a FIXME in PCHWriter.cpp/PCHReader.cpp.
I think the changes which I have ifdef'ed out are correct. They
need be considered for in a few Indexer/PCH test cases.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@89561 91177308-0d34-0410-b5e6-96231b3b80d8
The following attributes are currently supported in C++0x attribute
lists (and in GNU ones as well):
- align() - semantics believed to be conformant to n3000, except for
redeclarations and what entities it may apply to
- final - semantics believed to be conformant to CWG issue 817's proposed
wording, except for redeclarations
- noreturn - semantics believed to be conformant to n3000, except for
redeclarations
- carries_dependency - currently ignored (this is an optimization hint)
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@89543 91177308-0d34-0410-b5e6-96231b3b80d8
name 'T' is looked up in the expression
t.~T()
Previously, we weren't looking into the type of "t", and therefore
would fail when T actually referred to an injected-class-name. Fixes
PR5530.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@89493 91177308-0d34-0410-b5e6-96231b3b80d8
two classes, one for typenames and one for values; this seems to have some
support from Doug if not necessarily from the extremely-vague-on-this-point
standard. Track the location of the 'typename' keyword in a using-typename
decl. Make a new lookup result for unresolved values and deal with it in
most places.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@89184 91177308-0d34-0410-b5e6-96231b3b80d8
LookupResult RAII powers to diagnose ambiguity in the results. Other diagnostics
(e.g. access control and deprecation) will be moved to automatically trigger
during lookup as part of this same mechanism.
This abstraction makes it much easier to encapsulate aliasing declarations
(e.g. using declarations) inside the lookup system: eventually, lookup will
just produce the aliases in the LookupResult, and the standard access methods
will naturally strip the aliases off.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@89027 91177308-0d34-0410-b5e6-96231b3b80d8
sugared types. The basic problem is that our qualifier accessors
(getQualifiers, getCVRQualifiers, isConstQualified, etc.) only look at
the current QualType and not at any qualifiers that come from sugared
types, meaning that we won't see these qualifiers through, e.g.,
typedefs:
typedef const int CInt;
typedef CInt Self;
Self.isConstQualified() currently returns false!
Various bugs (e.g., PR5383) have cropped up all over the front end due
to such problems. I'm addressing this problem by splitting each
qualifier accessor into two versions:
- the "local" version only returns qualifiers on this particular
QualType instance
- the "normal" version that will eventually combine qualifiers from this
QualType instance with the qualifiers on the canonical type to
produce the full set of qualifiers.
This commit adds the local versions and switches a few callers from
the "normal" version (e.g., isConstQualified) over to the "local"
version (e.g., isLocalConstQualified) when that is the right thing to
do, e.g., because we're printing or serializing the qualifiers. Also,
switch a bunch of
Context.getCanonicalType(T1).getUnqualifiedType() == Context.getCanonicalType(T2).getQualifiedType()
expressions over to
Context.hasSameUnqualifiedType(T1, T2)
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@88969 91177308-0d34-0410-b5e6-96231b3b80d8
handling template template parameters properly. This refactoring:
- Parses template template arguments as id-expressions, representing
the result of the parse as a template name (Action::TemplateTy)
rather than as an expression (lame!).
- Represents all parsed template arguments via a new parser-specific
type, ParsedTemplateArgument, which stores the kind of template
argument (type, non-type, template) along with all of the source
information about the template argument. This replaces an ad hoc
set of 3 vectors (one for a void*, which was either a type or an
expression; one for a bit telling whether the first was a type or
an expression; and one for a single source location pointing at
the template argument).
- Moves TemplateIdAnnotation into the new Parse/Template.h. It never
belonged in the Basic library anyway.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@86708 91177308-0d34-0410-b5e6-96231b3b80d8
ArrayType>()) does not instantiate. Update all callers that used this
unsafe feature to use the appropriate ASTContext::getAs*ArrayType method.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@86596 91177308-0d34-0410-b5e6-96231b3b80d8