instantiation), be sure to finish the expression statement by
providing a FullExprArg, making sure that temporaries get
destroyed. Fixes an obscure failure when parsing
llvm/LinkAllPasses.h.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@88668 91177308-0d34-0410-b5e6-96231b3b80d8
parameters. Rather than storing them as either declarations (for the
non-dependent case) or expressions (for the dependent case), we now
(always) store them as TemplateNames.
The primary change here is to add a new kind of TemplateArgument,
which stores a TemplateName. However, making that change ripples to
every switch on a TemplateArgument's kind, also affecting
TemplateArgumentLocInfo/TemplateArgumentLoc, default template
arguments for template template parameters, type-checking of template
template arguments, etc.
This change is light on testing. It should fix several pre-existing
problems with template template parameters, such as:
- the inability to use dependent template names as template template
arguments
- template template parameter default arguments cannot be
instantiation
However, there are enough pieces missing that more implementation is
required before we can adequately test template template parameters.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@86777 91177308-0d34-0410-b5e6-96231b3b80d8
still be dependent or invoke an overloaded operator. Previously, we
only supported builtin operators.
BinaryOperator/CompoundAssignOperator didn't have this issue because
we always built a CXXOperatorCallExpr node, even when name lookup
didn't find any functions to save until instantiation time. Now, that
code builds a BinaryOperator or CompoundAssignOperator rather than a
CXXOperatorCallExpr, to save some space.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@86087 91177308-0d34-0410-b5e6-96231b3b80d8
expressions, keep track of whether we are immediately taking the
address of the expression. Pass this flag when building a declaration
name expression so that we handle pointer-to-member constants
properly.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@86017 91177308-0d34-0410-b5e6-96231b3b80d8
operators, e.g.,
operator+<int>
which now works in declarators, id-expressions, and member access
expressions. This commit only implements the non-dependent case, where
we can resolve the template-id to an actual declaration.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85966 91177308-0d34-0410-b5e6-96231b3b80d8
"->" with a use of ParseUnqualifiedId. Collapse
ActOnMemberReferenceExpr, ActOnDestructorReferenceExpr (both of them),
ActOnOverloadedOperatorReferenceExpr,
ActOnConversionOperatorReferenceExpr, and
ActOnMemberTemplateIdReferenceExpr into a single, new action
ActOnMemberAccessExpr that does the same thing more cleanly (and can
keep more source-location information).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85930 91177308-0d34-0410-b5e6-96231b3b80d8
types. Preserve it through template instantiation. Preserve it through PCH,
although TSTs themselves aren't serializable, so that's pretty much meaningless.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85500 91177308-0d34-0410-b5e6-96231b3b80d8
instantiation once we have committed to performing the
instantiation. As part of this, make our makeshift
template-instantiation location information suck slightly less.
Fixes PR5264.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85209 91177308-0d34-0410-b5e6-96231b3b80d8
qualified reference to a declaration that is not a non-static data
member or non-static member function, e.g.,
namespace N { int i; }
int j = N::i;
Instead, extend DeclRefExpr to optionally store the qualifier. Most
clients won't see or care about the difference (since
QualifierDeclRefExpr inherited DeclRefExpr). However, this reduces the
number of top-level expression types that clients need to cope with,
brings the implementation of DeclRefExpr into line with MemberExpr,
and simplifies and unifies our handling of declaration references.
Extended DeclRefExpr to (optionally) store explicitly-specified
template arguments. This occurs when naming a declaration via a
template-id (which will be stored in a TemplateIdRefExpr) that,
following template argument deduction and (possibly) overload
resolution, is replaced with a DeclRefExpr that refers to a template
specialization but maintains the template arguments as written.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@84962 91177308-0d34-0410-b5e6-96231b3b80d8
the DeclaratorInfo, one for semantic analysis), just build a single type whose
canonical type will reflect the semantic analysis (assuming the type is
well-formed, of course).
To make that work, make a few changes to the type system:
* allow the nominal pointee type of a reference type to be a (possibly sugared)
reference type. Also, preserve the original spelling of the reference type.
Both of these can be ignored on canonical reference types.
* Remove ObjCProtocolListType and preserve the associated source information on
the various ObjC TypeLocs. Preserve the spelling of protocol lists except in
the canonical form.
* Preserve some level of source type structure on parameter types, but
canonicalize on the canonical function type. This is still a WIP.
Drops code size, makes strides towards accurate source location representation,
slight (~1.7%) progression on Cocoa.h because of complexity drop.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@84907 91177308-0d34-0410-b5e6-96231b3b80d8
N::f<int>
keep track of the full nested-name-specifier. This is mainly QoI and
relatively hard to test; will try to come up with a printing-based
test once we also retain the explicit template arguments past overload
resolution.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@84869 91177308-0d34-0410-b5e6-96231b3b80d8
qualified member access expression (e.g., t->U::member) when that
first qualifier refers to a template parameters.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@84612 91177308-0d34-0410-b5e6-96231b3b80d8
TemplateTypeParmType with the substituted type directly; instead, replace it
with a SubstTemplateTypeParmType which will note that the type was originally
written as a template type parameter. This makes it reasonable to preserve
source information even through template substitution.
Also define the new SubstTemplateTypeParmType class, obviously.
For consistency with current behavior, we stringize these types as if they
were the underlying type. I'm not sure this is the right thing to do.
At any rate, I paled at adding yet another clause to the don't-desugar 'if'
statement, so I extracted a function to do it. The new function also does
The Right Thing more often, I think: e.g. if we have a chain of typedefs
leading to a vector type, we will now desugar all but the last one.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@84412 91177308-0d34-0410-b5e6-96231b3b80d8
TypeLoc records for declarations; it should not be necessary to represent it
directly in the type system.
Please complain if you were using these classes and feel you can't replicate
previous functionality using the TypeLoc API.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@84222 91177308-0d34-0410-b5e6-96231b3b80d8
This is used only for keeping detailed type source information for protocol references,
it should not participate in the semantics of the type system.
Its protocol list is not canonicalized.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@83093 91177308-0d34-0410-b5e6-96231b3b80d8
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@82705 91177308-0d34-0410-b5e6-96231b3b80d8
templates, e.g.,
x.template get<T>
We can now parse these, represent them within an UnresolvedMemberExpr
expression, then instantiate that expression node in simple cases.
This allows us to stumble through parsing LLVM's Casting.h.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@81300 91177308-0d34-0410-b5e6-96231b3b80d8
directly in the AST. The current thinking is to create these
only in C++ mode for efficiency. But for now, they're not being
created at all; patch to follow.
This will let us do things like verify that tags match during
template instantation, as well as signal that an elaborated type
specifier was used for clients that actually care.
Optimally, the TypeLoc hierarchy should be adjusted to carry tag
location information as well.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@81057 91177308-0d34-0410-b5e6-96231b3b80d8
expressions, e.g.,
p->~T()
when p is a pointer to a scalar type.
We don't currently diagnose errors when pseudo-destructor expressions
are used in any way other than by forming a call.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@81009 91177308-0d34-0410-b5e6-96231b3b80d8
things, this means that we can properly cope with member access
expressions such as
t->operator T()
where T is a template parameter (or other dependent type).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80957 91177308-0d34-0410-b5e6-96231b3b80d8
involve qualified names, e.g., x->Base::f. We now maintain enough
information in the AST to compare the results of the name lookup of
"Base" in the scope of the postfix-expression (determined at template
definition time) and in the type of the object expression.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80953 91177308-0d34-0410-b5e6-96231b3b80d8
t->Base::f
where t has a dependent type. We save the nested-name-specifier in the
CXXUnresolvedMemberExpr then, during instantiation, substitute into
the nested-name-specifier with the (transformed) object type of t, so
that we get name lookup into the type of the object expression.
Note that we do not yet retain information about name lookup into the
lexical scope of the member access expression, so several regression
tests are still disabled.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80925 91177308-0d34-0410-b5e6-96231b3b80d8
x->Base::f
We no longer try to "enter" the context of the type that "x" points
to. Instead, we drag that object type through the parser and pass it
into the Sema routines that need to know how to perform lookup within
member access expressions.
We now implement most of the crazy name lookup rules in C++
[basic.lookup.classref] for non-templated code, including performing
lookup both in the context of the type referred to by the member
access and in the scope of the member access itself and then detecting
ambiguities when the two lookups collide (p1 and p4; p3 and p7 are
still TODO). This change also corrects our handling of name lookup
within template arguments of template-ids inside the
nested-name-specifier (p6; we used to look into the scope of the
object expression for them) and fixes PR4703.
I have disabled some tests that involve member access expressions
where the object expression has dependent type, because we don't yet
have the ability to describe dependent nested-name-specifiers starting
with an identifier.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80843 91177308-0d34-0410-b5e6-96231b3b80d8
space within the MemberExpr for the nested-name-specifier and its
source range. We'll do the same thing with explicitly-specified
template arguments, assuming I don't flip-flop again.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80642 91177308-0d34-0410-b5e6-96231b3b80d8
also be adding explicit template arguments as an additional
"adornment". No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80628 91177308-0d34-0410-b5e6-96231b3b80d8
name, e.g.,
x->Base::f()
retain the qualifier (and its source range information) in a new
subclass of MemberExpr called CXXQualifiedMemberExpr. Provide
construction, transformation, profiling, printing, etc., for this new
expression type.
When a virtual function is called via a qualified name, don't emit a
virtual call. Instead, call that function directly. Mike, could you
add a CodeGen test for this, too?
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80167 91177308-0d34-0410-b5e6-96231b3b80d8