when they're instantiated. Merge the note into the -Wreorder warning; it
doesn't really contribute much, and it was splitting a thought across diagnostics
anyway. Don't crash in the parser when a constructor's initializers end in a
comma and there's no body; the recovery here is still terrible, but anything's
better than a crash.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@100922 91177308-0d34-0410-b5e6-96231b3b80d8
ranges as part of the ASTContext. This code is not and was never used,
but contributes ~250k to the size of the Cocoa.h precompiled
header.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@99007 91177308-0d34-0410-b5e6-96231b3b80d8
which has the label map, switch statement stack, etc. Previously, we
had a single set of maps in Sema (for the function) along with a stack
of block scopes. However, this lead to funky behavior with nested
functions, e.g., in the member functions of local classes.
The explicit-stack approach is far cleaner, and we retain a 1-element
cache so that we're not malloc/free'ing every time we enter a
function. Fixes PR6382.
Also, tweaked the unused-variable warning suppression logic to look at
errors within a given Scope rather than within a given function. The
prior code wasn't looking at the right number-of-errors count when
dealing with blocks, since the block's count would be deallocated
before we got to ActOnPopScope. This approach works with nested
blocks/functions, and gives tighter error recovery.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@97518 91177308-0d34-0410-b5e6-96231b3b80d8
propagating error conditions out of the various annotate-me-a-snowflake
routines. Generally (but not universally) removes redundant diagnostics
as well as, you know, not crashing on bad code. On the other hand,
I have just signed myself up to fix fiddly parser errors for the next
week. Again.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@97221 91177308-0d34-0410-b5e6-96231b3b80d8
we would just leak them all over the place, with no clear ownership of
these objects at all. AttributeList objects would get leaked on both
error and non-error paths.
Note: I introduced the usage of llvm::OwningPtr<AttributeList> to
manage these objects, which is particularly useful for methods with
multiple return sites. In at least one method I used them even when
they weren't strictly necessary because it clarified the ownership
semantics and made the code easier to read. Should the excessive
'take()' and 'reset()' calls become a performance issue we can always
re-evaluate.
Note+1: I believe I have not introduced any double-frees, but it would
be nice for someone to review this.
This fixes <rdar://problem/7635046>.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@95847 91177308-0d34-0410-b5e6-96231b3b80d8
preprocessor. This could be used by an OpenMP implementation
or something. Patch by Abramo Bagnara!
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@93795 91177308-0d34-0410-b5e6-96231b3b80d8
provide completions for @ keywords. Previously, we only provided
@-completions after an @ was actually typed, which is useful but
probably not the common case.
Also, make sure a few Objective-C 2.0 completions only show up when
Objective-C 2.0 support is enabled (the default).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@93354 91177308-0d34-0410-b5e6-96231b3b80d8
that name constructors, the endless joys of out-of-line constructor
definitions, and various other corner cases that the previous hack
never imagined. Fixes PR5688 and tightens up semantic analysis for
constructor names.
Additionally, fixed a problem where we wouldn't properly enter the
declarator scope of a parenthesized declarator. We were entering the
scope, then leaving it when we saw the ")"; now, we re-enter the
declarator scope before parsing the parameter list.
Note that we are forced to perform some tentative parsing within a
class (call it C) to tell the difference between
C(int); // constructor
and
C (f)(int); // member function
which is rather unfortunate. And, although it isn't necessary for
correctness, we use the same tentative-parsing mechanism for
out-of-line constructors to improve diagnostics in icky cases like:
C::C C::f(int); // error: C::C refers to the constructor name, but
// we complain nicely and recover by treating it as
// a type.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@93322 91177308-0d34-0410-b5e6-96231b3b80d8
C++ grammatical constructs that show up in top-level (namespace-level)
declarations, member declarations, template declarations, statements,
expressions, conditions, etc. For example, we now provide a pattern
for
static_cast<type>(expr)
when we can have an expression, or
using namespace identifier;
when we can have a using directive.
Also, improves the results of code completion at the beginning of a
top-level declaration. Previously, we would see value names (function
names, global variables, etc.); now we see types, namespace names,
etc., but no values.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@93134 91177308-0d34-0410-b5e6-96231b3b80d8
scope specifiers. Fix a tentative parsing bug that came up in LLVM.
Incidentally fixes some random FIXMEs in an existing testcase.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@91734 91177308-0d34-0410-b5e6-96231b3b80d8
to be a bool in Parser that is twiddled by the ColonProtectionRAIIObject
class. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@91014 91177308-0d34-0410-b5e6-96231b3b80d8
The following attributes are currently supported in C++0x attribute
lists (and in GNU ones as well):
- align() - semantics believed to be conformant to n3000, except for
redeclarations and what entities it may apply to
- final - semantics believed to be conformant to CWG issue 817's proposed
wording, except for redeclarations
- noreturn - semantics believed to be conformant to n3000, except for
redeclarations
- carries_dependency - currently ignored (this is an optimization hint)
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@89543 91177308-0d34-0410-b5e6-96231b3b80d8
handling template template parameters properly. This refactoring:
- Parses template template arguments as id-expressions, representing
the result of the parse as a template name (Action::TemplateTy)
rather than as an expression (lame!).
- Represents all parsed template arguments via a new parser-specific
type, ParsedTemplateArgument, which stores the kind of template
argument (type, non-type, template) along with all of the source
information about the template argument. This replaces an ad hoc
set of 3 vectors (one for a void*, which was either a type or an
expression; one for a bit telling whether the first was a type or
an expression; and one for a single source location pointing at
the template argument).
- Moves TemplateIdAnnotation into the new Parse/Template.h. It never
belonged in the Basic library anyway.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@86708 91177308-0d34-0410-b5e6-96231b3b80d8
appears in a deprecated context. In the new strategy, we emit the warnings
as usual unless we're currently parsing a declaration, where "declaration" is
restricted to mean a decl group or a few special cases in Objective C. If
we *are* parsing a declaration, we queue up the deprecation warnings until
the declaration has been completely parsed, and then emit them only if the
decl is not deprecated.
We also standardize the bookkeeping for deprecation so as to avoid special cases.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85998 91177308-0d34-0410-b5e6-96231b3b80d8
operators, e.g.,
operator+<int>
which now works in declarators, id-expressions, and member access
expressions. This commit only implements the non-dependent case, where
we can resolve the template-id to an actual declaration.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85966 91177308-0d34-0410-b5e6-96231b3b80d8
declarators are parsed primarily within a single function (at least for
these cases). Remove some excess diagnostics arising during parse failures.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85924 91177308-0d34-0410-b5e6-96231b3b80d8
annotation token.
- I'm not sure what the best thing to print is, for now we just print the token
location and 'at annotation token'.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@84312 91177308-0d34-0410-b5e6-96231b3b80d8
x->Base::f
We no longer try to "enter" the context of the type that "x" points
to. Instead, we drag that object type through the parser and pass it
into the Sema routines that need to know how to perform lookup within
member access expressions.
We now implement most of the crazy name lookup rules in C++
[basic.lookup.classref] for non-templated code, including performing
lookup both in the context of the type referred to by the member
access and in the scope of the member access itself and then detecting
ambiguities when the two lookups collide (p1 and p4; p3 and p7 are
still TODO). This change also corrects our handling of name lookup
within template arguments of template-ids inside the
nested-name-specifier (p6; we used to look into the scope of the
object expression for them) and fixes PR4703.
I have disabled some tests that involve member access expressions
where the object expression has dependent type, because we don't yet
have the ability to describe dependent nested-name-specifiers starting
with an identifier.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80843 91177308-0d34-0410-b5e6-96231b3b80d8
their members, including member class template, member function
templates, and member classes and functions of member templates.
To actually parse the nested-name-specifiers that qualify the name of
an out-of-line definition of a member template, e.g.,
template<typename X> template<typename Y>
X Outer<X>::Inner1<Y>::foo(Y) {
return X();
}
we need to look for the template names (e.g., "Inner1") as a member of
the current instantiation (Outer<X>), even before we have entered the
scope of the current instantiation. Since we can't do this in general
(i.e., we should not be looking into all dependent
nested-name-specifiers as if they were the current instantiation), we
rely on the parser to tell us when it is parsing a declaration
specifier sequence, and, therefore, when we should consider the
current scope specifier to be a current instantiation.
Printing of complicated, dependent nested-name-specifiers may be
somewhat broken by this commit; I'll add tests for this issue and fix
the problem (if it still exists) in a subsequent commit.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80044 91177308-0d34-0410-b5e6-96231b3b80d8
member templates declared inside other templates. This allows us to
match out-of-line definitions of member function templates within
class templates to the declarations within the class template. We
still can't handle out-of-line definitions for member class templates,
however.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@79955 91177308-0d34-0410-b5e6-96231b3b80d8
elsewhere. Very slightly decouples DeclSpec users from knowing the exact
diagnostics to report, and makes it easier to provide different diagnostics in
some places.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@77990 91177308-0d34-0410-b5e6-96231b3b80d8
declaration in the AST.
The new ASTContext::getCommentForDecl function searches for a comment
that is attached to the given declaration, and returns that comment,
which may be composed of several comment blocks.
Comments are always available in an AST. However, to avoid harming
performance, we don't actually parse the comments. Rather, we keep the
source ranges of all of the comments within a large, sorted vector,
then lazily extract comments via a binary search in that vector only
when needed (which never occurs in a "normal" compile).
Comments are written to a precompiled header/AST file as a blob of
source ranges. That blob is only lazily loaded when one requests a
comment for a declaration (this never occurs in a "normal" compile).
The indexer testbed now supports comment extraction. When the
-point-at location points to a declaration with a Doxygen-style
comment, the indexer testbed prints the associated comment
block(s). See test/Index/comments.c for an example.
Some notes:
- We don't actually attempt to parse the comment blocks themselves,
beyond identifying them as Doxygen comment blocks to associate them
with a declaration.
- We won't find comment blocks that aren't adjacent to the
declaration, because we start our search based on the location of
the declaration.
- We don't go through the necessary hops to find, for example,
whether some redeclaration of a declaration has comments when our
current declaration does not. Similarly, we don't attempt to
associate a \param Foo marker in a function body comment with the
parameter named Foo (although that is certainly possible).
- Verification of my "no performance impact" claims is still "to be
done".
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@74704 91177308-0d34-0410-b5e6-96231b3b80d8