"->" with a use of ParseUnqualifiedId. Collapse
ActOnMemberReferenceExpr, ActOnDestructorReferenceExpr (both of them),
ActOnOverloadedOperatorReferenceExpr,
ActOnConversionOperatorReferenceExpr, and
ActOnMemberTemplateIdReferenceExpr into a single, new action
ActOnMemberAccessExpr that does the same thing more cleanly (and can
keep more source-location information).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85930 91177308-0d34-0410-b5e6-96231b3b80d8
yet another copy of the unqualified-id parsing code.
Also, use UnqualifiedId to simplify the Action interface for building
id-expressions. ActOnIdentifierExpr, ActOnCXXOperatorFunctionIdExpr,
ActOnCXXConversionFunctionExpr, and ActOnTemplateIdExpr have all been
removed in favor of the new ActOnIdExpression action.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85904 91177308-0d34-0410-b5e6-96231b3b80d8
representation of a C++ unqualified-id, along with a single parsing
function (Parser::ParseUnqualifiedId) that will parse all of the
various forms of unqualified-id in C++.
Replace the representation of the declarator name in Declarator with
the new UnqualifiedId class, simplifying declarator-id parsing
considerably and providing more source-location information to
Sema. In the future, I hope to migrate all of the other
unqualified-id-parsing code over to this single representation, then
begin to merge actions that are currently only different because we
didn't have a unqualified notion of the name in the parser.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@85851 91177308-0d34-0410-b5e6-96231b3b80d8
N::f<int>
keep track of the full nested-name-specifier. This is mainly QoI and
relatively hard to test; will try to come up with a printing-based
test once we also retain the explicit template arguments past overload
resolution.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@84869 91177308-0d34-0410-b5e6-96231b3b80d8
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@82166 91177308-0d34-0410-b5e6-96231b3b80d8
templates, e.g.,
x.template get<T>
We can now parse these, represent them within an UnresolvedMemberExpr
expression, then instantiate that expression node in simple cases.
This allows us to stumble through parsing LLVM's Casting.h.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@81300 91177308-0d34-0410-b5e6-96231b3b80d8
x->Base::f
We no longer try to "enter" the context of the type that "x" points
to. Instead, we drag that object type through the parser and pass it
into the Sema routines that need to know how to perform lookup within
member access expressions.
We now implement most of the crazy name lookup rules in C++
[basic.lookup.classref] for non-templated code, including performing
lookup both in the context of the type referred to by the member
access and in the scope of the member access itself and then detecting
ambiguities when the two lookups collide (p1 and p4; p3 and p7 are
still TODO). This change also corrects our handling of name lookup
within template arguments of template-ids inside the
nested-name-specifier (p6; we used to look into the scope of the
object expression for them) and fixes PR4703.
I have disabled some tests that involve member access expressions
where the object expression has dependent type, because we don't yet
have the ability to describe dependent nested-name-specifiers starting
with an identifier.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80843 91177308-0d34-0410-b5e6-96231b3b80d8
their members, including member class template, member function
templates, and member classes and functions of member templates.
To actually parse the nested-name-specifiers that qualify the name of
an out-of-line definition of a member template, e.g.,
template<typename X> template<typename Y>
X Outer<X>::Inner1<Y>::foo(Y) {
return X();
}
we need to look for the template names (e.g., "Inner1") as a member of
the current instantiation (Outer<X>), even before we have entered the
scope of the current instantiation. Since we can't do this in general
(i.e., we should not be looking into all dependent
nested-name-specifiers as if they were the current instantiation), we
rely on the parser to tell us when it is parsing a declaration
specifier sequence, and, therefore, when we should consider the
current scope specifier to be a current instantiation.
Printing of complicated, dependent nested-name-specifiers may be
somewhat broken by this commit; I'll add tests for this issue and fix
the problem (if it still exists) in a subsequent commit.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80044 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR4704 problems
Addresses Eli's patch feedback re: ugly cast code
Updates all postfix operators to remove ParenListExprs. While this is awful,
no better solution (say, in the parser) is obvious to me. Better solutions
welcome.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@78621 91177308-0d34-0410-b5e6-96231b3b80d8
--- Reverse-merging r78535 into '.':
D test/Sema/altivec-init.c
U include/clang/Basic/DiagnosticSemaKinds.td
U include/clang/AST/Expr.h
U include/clang/AST/StmtNodes.def
U include/clang/Parse/Parser.h
U include/clang/Parse/Action.h
U tools/clang-cc/clang-cc.cpp
U lib/Frontend/PrintParserCallbacks.cpp
U lib/CodeGen/CGExprScalar.cpp
U lib/Sema/SemaInit.cpp
U lib/Sema/Sema.h
U lib/Sema/SemaExpr.cpp
U lib/Sema/SemaTemplateInstantiateExpr.cpp
U lib/AST/StmtProfile.cpp
U lib/AST/Expr.cpp
U lib/AST/StmtPrinter.cpp
U lib/Parse/ParseExpr.cpp
U lib/Parse/ParseExprCXX.cpp
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@78551 91177308-0d34-0410-b5e6-96231b3b80d8
In addition to being defined by the AltiVec PIM, this is also the vector
initializer syntax used by OpenCL, so that vector literals are compatible
with macro arguments.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@78535 91177308-0d34-0410-b5e6-96231b3b80d8
elsewhere. Very slightly decouples DeclSpec users from knowing the exact
diagnostics to report, and makes it easier to provide different diagnostics in
some places.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@77990 91177308-0d34-0410-b5e6-96231b3b80d8
templates, such as make<int&>. These template-ids are only barely
functional for function calls; much more to come.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@74563 91177308-0d34-0410-b5e6-96231b3b80d8
compilation, and (hopefully) introduce RAII objects for changing the
"potentially evaluated" state at all of the necessary places within
Sema and Parser. Other changes:
- Set the unevaluated/potentially-evaluated context appropriately
during template instantiation.
- We now recognize three different states while parsing or
instantiating expressions: unevaluated, potentially evaluated, and
potentially potentially evaluated (for C++'s typeid).
- When we're in a potentially potentially-evaluated context, queue
up MarkDeclarationReferenced calls in a stack. For C++ typeid
expressions that are potentially evaluated, we will play back
these MarkDeclarationReferenced calls when we exit the
corresponding potentially potentially-evaluated context.
- Non-type template arguments are now parsed as constant
expressions, so they are not potentially-evaluated.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@73899 91177308-0d34-0410-b5e6-96231b3b80d8
C++. This logic is required to trigger implicit instantiation of
function templates and member functions of class templates, which will
be implemented separately.
This commit includes support for -Wunused-parameter, printing warnings
for named parameters that are not used within a function/Objective-C
method/block. Fixes <rdar://problem/6505209>.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@73797 91177308-0d34-0410-b5e6-96231b3b80d8
(T(*)(int[x+y]));
is an (invalid) paren expression, but "x+y" will be parsed as part of the (rejected) type-id,
so unnecessary Action calls are made for an unused (and possibly leaked) "x+y".
Use a different scheme, similar to parsing inline methods. The parenthesized tokens are cached,
the context that follows is determined (possibly by parsing a cast-expression),
and then we re-introduce the cached tokens into the token stream and parse them appropriately.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72279 91177308-0d34-0410-b5e6-96231b3b80d8
There are no unnecessary action calls period (courtesy of the annotation scheme) and too many 'this means'..
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72263 91177308-0d34-0410-b5e6-96231b3b80d8
Embed its functionality into it's only user, ParseCXXCasts.
CXXCasts now get the "actual" expression directly, they no longer always receive a ParenExpr. This is better since the
parentheses are always part of the C++ casts syntax.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72257 91177308-0d34-0410-b5e6-96231b3b80d8
redundant functionality. The result (ASTOwningVector) lives in
clang/Parse/Ownership.h and is used by both the parser and semantic
analysis. No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72214 91177308-0d34-0410-b5e6-96231b3b80d8
template<typename T>
struct X {
struct Inner;
};
template struct X<int>::Inner;
This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>.
This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).
Stuart vouched for me. Blame him.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71756 91177308-0d34-0410-b5e6-96231b3b80d8
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@70020 91177308-0d34-0410-b5e6-96231b3b80d8
Plus, reword a extension warnings to avoid talking about "ISO C" when
the extension might also be available in C++ or C++0x.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@68257 91177308-0d34-0410-b5e6-96231b3b80d8
failures that involve malformed types, e.g., "typename X::foo" where
"foo" isn't a type, or "std::vector<void>" that doens't instantiate
properly.
Similarly, be a bit smarter in our handling of ambiguities that occur
in Sema::getTypeName, to eliminate duplicate error messages about
ambiguous name lookup.
This eliminates two XFAILs in test/SemaCXX, one of which was crying
out to us, trying to tell us that we were producing repeated error
messages.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@68251 91177308-0d34-0410-b5e6-96231b3b80d8
within nested-name-specifiers, e.g., for the "apply" in
typename MetaFun::template apply<T1, T2>::type
At present, we can't instantiate these nested-name-specifiers, so our
testing is sketchy.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@68081 91177308-0d34-0410-b5e6-96231b3b80d8
representation handles the various ways in which one can name a
template, including unqualified references ("vector"), qualified
references ("std::vector"), and dependent template names
("MetaFun::template apply").
One immediate effect of this change is that the representation of
nested-name-specifiers in type names for class template
specializations (e.g., std::vector<int>) is more accurate. Rather than
representing std::vector<int> as
std::(vector<int>)
we represent it as
(std::vector)<int>
which more closely follows the C++ grammar.
Additionally, templates are no longer represented as declarations
(DeclPtrTy) in Parse-Sema interactions. Instead, I've introduced a new
OpaquePtr type (TemplateTy) that holds the representation of a
TemplateName. This will simplify the handling of dependent
template-names, once we get there.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@68074 91177308-0d34-0410-b5e6-96231b3b80d8
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67952 91177308-0d34-0410-b5e6-96231b3b80d8
qualified name, e.g.,
foo::x
so that we retain the nested-name-specifier as written in the source
code and can reproduce that qualified name when printing the types
back (e.g., in diagnostics). This is PR3493, which won't be complete
until finished the other tasks mentioned near the end of this commit.
The parser's representation of nested-name-specifiers, CXXScopeSpec,
is now a bit fatter, because it needs to contain the scopes that
precede each '::' and keep track of whether the global scoping
operator '::' was at the beginning. For example, we need to keep track
of the leading '::', 'foo', and 'bar' in
::foo::bar::x
The Action's CXXScopeTy * is no longer a DeclContext *. It's now the
opaque version of the new NestedNameSpecifier, which contains a single
component of a nested-name-specifier (either a DeclContext * or a Type
*, bitmangled).
The new sugar type QualifiedNameType composes a sequence of
NestedNameSpecifiers with a representation of the type we're actually
referring to. At present, we only build QualifiedNameType nodes within
Sema::getTypeName. This will be extended to other type-constructing
actions (e.g., ActOnClassTemplateId).
Also on the way: QualifiedDeclRefExprs will also store a sequence of
NestedNameSpecifiers, so that we can print out the property
nested-name-specifier. I expect to also use this for handling
dependent names like Fibonacci<I - 1>::value.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67265 91177308-0d34-0410-b5e6-96231b3b80d8
std::vector<int>::allocator_type
When we parse a template-id that names a type, it will become either a
template-id annotation (which is a parsed representation of a
template-id that has not yet been through semantic analysis) or a
typename annotation (where semantic analysis has resolved the
template-id to an actual type), depending on the context. We only
produce a type in contexts where we know that we only need type
information, e.g., in a type specifier. Otherwise, we create a
template-id annotation that can later be "upgraded" by transforming it
into a typename annotation when the parser needs a type. This occurs,
for example, when we've parsed "std::vector<int>" above and then see
the '::' after it. However, it means that when writing something like
this:
template<> class Outer::Inner<int> { ... };
We have two tokens to represent Outer::Inner<int>: one token for the
nested name specifier Outer::, and one template-id annotation token
for Inner<int>, which will be passed to semantic analysis to define
the class template specialization.
Most of the churn in the template tests in this patch come from an
improvement in our error recovery from ill-formed template-ids.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@65467 91177308-0d34-0410-b5e6-96231b3b80d8
us whether there was an error in trying to parse a type-name (type-id
in C++). This allows propagation of errors further in the compiler,
suppressing more bogus error messages.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64922 91177308-0d34-0410-b5e6-96231b3b80d8
than a Decl, which gives us some more flexibility to express the
results with the type system. There are no clients using this
flexibility yet, but it's meant to be able to describe qualified names
as written in the source (e.g., "foo::type") or template-ids that name
a class template specialization (e.g., "std::vector<INT>").
DeclSpec's TST_typedef has become TST_typename, to reflect its use to
describe types found by name (that may or may not be typedefs). The
type representation of a DeclSpec with TST_typename is an opaque
QualType pointer. All users of TST_typedef, both direct and indirect,
have been updated for these changes.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64141 91177308-0d34-0410-b5e6-96231b3b80d8
Pointers to functions don't work yet, and pointers to overloaded functions even less. Also, far too much illegal code is accepted.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63655 91177308-0d34-0410-b5e6-96231b3b80d8
.def file for each library. This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.
Patch by Anders Johnsen!
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63111 91177308-0d34-0410-b5e6-96231b3b80d8
- When it's safe, ActionResult uses the low bit of the pointer for
the "invalid" flag rather than a separate "bool" value. This keeps
GCC from generating some truly awful code, for a > 3x speedup in the
result-passing microbenchmark.
- When DISABLE_SMART_POINTERS is defined, store an ActionResult
within ASTOwningResult rather than an ASTOwningPtr. Brings the
performance benefits of the above to smart pointers with
DISABLE_SMART_POINTERS defined.
Sadly, these micro-benchmark performance improvements don't seem to
make much of a difference on Cocoa.h right now. However, they're
harmless and might help with future optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63061 91177308-0d34-0410-b5e6-96231b3b80d8